Antibacterial activity of the novel oxazolidinone contezolid (MRX-I) against Mycobacterium abscessus

Author:

Gao Shan.,Nie Wenjuan.,Liu Lina.,Su Lei.,You Yingxia.,Geng Ruixue.,Chu Naihui

Abstract

ObjectiveTo evaluate contezolid (MRX-I) antibacterial activity against Mycobacterium abscessus in vitro and in vivo and to assess whether MRX-I treatment can prolong survival of infected zebrafish.MethodsMRX-I inhibitory activity against M. abscessus in vitro was assessed by injecting MRX-I into zebrafish infected with green fluorescent protein-labelled M. abscessus. Thereafter, infected zebrafish were treated with azithromycin (AZM), linezolid (LZD) or MRX-I then maximum tolerated concentrations (MTCs) of drugs were determined based on M. abscessus growth inhibition using one-way ANOVA. Linear trend analysis of CFU counts and fluorescence intensities (mean ± SE values) was performed to detect linear relationships between MRX-I, AZM and LZD concentrations and these parameters.ResultsMRX-I anti-M. abscessus minimum inhibitory concentration (MIC) and MTC were 16 μg/mL and 15.6 μg/mL, respectively. MRX-I MTC-treated zebrafish fluorescence intensities were significantly lower than respective LZD group intensities (whole-body: 439040 ± 3647 vs. 509184 ± 23064, p < 0.01); head: 74147 ± 2175 vs. 95996 ± 8054, p < 0.05). As MRX-I concentration was increased from 0.488 μg/mL to 15.6 μg/mL, zebrafish whole-body, head and heart fluorescence intensities decreased. Statistically insignificant differences between the MRX-I MTC group survival rate (78.33%) vs. corresponding rates of the 62.5 μg/mL-treated AZM MTC group (88.33%, p > 0.05) and the 15.6 μg/mL-treated LZD MTC group (76.67%, p > 0.05) were observed.ConclusionMRX-I effectively inhibited M. abscessus growth and prolonged zebrafish survival when administered to M. abscessus-infected zebrafish, thus demonstrating that MRX-I holds promise as a clinical treatment for human M. abscessus infections.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Infectious Diseases,Microbiology (medical),Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3