Rapid hydrogel-based phage susceptibility test for pathogenic bacteria

Author:

Patpatia Sheetal,Schaedig Eric,Dirks Anna,Paasonen Lauri,Skurnik Mikael,Kiljunen Saija

Abstract

Phage therapy is one alternative to cure infections caused by antibiotic resistant bacteria. Due to the narrow host range of phages, hundreds to thousands of phages are required to cover the diversity of bacterial pathogens. In personalized phage therapy, fast selection of the phages for individual patients is essential for successful therapy. The aims of this study were to set up a rapid hydrogel-based liquid phage susceptibility assay (PST) for the selection of phages for therapeutic use and to establish a “ready-to-screen” plate concept, where phages are readily stored in hydrogel as small droplets in microtiter plate wells. We first tested four commercially available hydrogels (GrowDex, Askina, Purilon, and Intrasite) for their suitability as phage matrices in PSTs with four phages, two of which infecting Escherichia coli and two Staphylococcus aureus. Of these four hydrogels, GrowDex was the best matrix for PST, as it did not inhibit bacterial growth, released phages quickly when mixed with bacterial culture, and maintained phage viability well. We then optimized the assay for both optical density and microscopy readers using GrowDex as matrix with 23 bacterial strains representing 10 different species and 23 phages possessing different morphologies and genome sizes. When the bacterial growth was monitored by microscopy reader, the PST was executed in just 3 hours, and there was no need for overnight culturing bacterial cells prior to the assay, whereas using optical density reader, bacteria had to be pre-cultured overnight, and the assay time was five hours. Finally, we evaluated the effect of three different chemical stabilizers (trehalose, hyaluronic acid, and gelatin) in a six-month stability assay with six model phages. These phages assay behaved very differently in respect to the chemical stabilizers, and there was not a single stabilizer suitable for all phages. However, when gelatin (0.01%) or hyaluronic acid (0.2 mg/ml) was used as stabilizer, all tested phages were still considered as positives in PST after a six-month storage in 1 ml volume. In “ready-to-screen” plates, the differences in phage stabilities were even more profound, varying from two to six months for the most and least stable phages, respectively.

Funder

Jane ja Aatos Erkon Säätiö

Statens beredning för medicinsk och social utvärdering

UPM-Kymmene Oyj

Publisher

Frontiers Media SA

Subject

Infectious Diseases,Microbiology (medical),Immunology,Microbiology

Reference54 articles.

1. Phage treatment of human infections;Abedon;Bacteriophage,2011

2. Bacteriophage enumeration and detection methods;Ács;Front. Microbiol.,2020

3. An engineered three-dimensional stem cell niche in the inner ear by applying a nanofibrillar cellulose hydrogel with a sustained-release neurotrophic factor delivery system;Chang;Acta Biomater,2020

4. Applications of hyaluronic acid in ophthalmology and contact lenses;Chang;Molecules,2021

5. Chapter 1 - phage therapy–history from twort and d'Herelle through soviet experience to current approaches;Chanishvili,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3