Biological effects of trans, trans-farnesol in Leishmania amazonensis

Author:

Pinheiro Liliane Sena,Andrade-Neto Valter Viana,Mantuano-Barradas Marcio,Pereira Elisa Cavalcante,Barbosa Rodrigo Cesar Fernandes,de Oliveira Marcia Cristina Campos,Menna-Barreto Rubem Figueiredo Sadok,Cunha-Júnior Edézio Ferreira,Torres-Santos Eduardo Caio

Abstract

IntroductionFarnesol, derived from farnesyl pyrophosphate in the sterols biosynthetic pathway, is a molecule with three unsaturations and four possible isomers. Candida albicans predominantly secretes the trans, trans-farnesol (t, t-FOH) isomer, known for its role in regulating the virulence of various fungi species and modulating morphological transition processes. Notably, the evolutionary divergence in sterol biosynthesis between fungi, including Candida albicans, and trypanosomatids resulted in the synthesis of sterols with the ergostane skeleton, distinct from cholesterol. This study aims to assess the impact of exogenously added trans, trans-farnesol on the proliferative ability of Leishmania amazonensis and to identify its presence in the lipid secretome of the parasite.MethodsThe study involved the addition of exogenous trans, trans-farnesol to evaluate its interference with the proliferation of L. amazonensis promastigotes. Proliferation, cell cycle, DNA fragmentation, and mitochondrial functionality were assessed as indicators of the effects of trans, trans-farnesol. Additionally, lipid secretome analysis was conducted, focusing on the detection of trans, trans-farnesol and related products derived from the precursor, farnesyl pyrophosphate. In silico analysis was employed to identify the sequence for the farnesene synthase gene responsible for producing these isoprenoids in the Leishmania genome.ResultsExogenously added trans, trans-farnesol was found to interfere with the proliferation of L. amazonensis promastigotes, inhibiting the cell cycle without causing DNA fragmentation or loss of mitochondrial functionality. Despite the absence of trans, trans-farnesol in the culture supernatant, other products derived from farnesyl pyrophosphate, specifically α-farnesene and β-farnesene, were detected starting on the fourth day of culture, continuing to increase until the tenth day. Furthermore, the identification of the farnesene synthase gene in the Leishmania genome through in silico analysis provided insights into the enzymatic basis of isoprenoid production.DiscussionThe findings collectively offer the first insights into the mechanism of action of farnesol on L. amazonensis. While trans, trans-farnesol was not detected in the lipid secretome, the presence of α-farnesene and β-farnesene suggests alternative pathways or modifications in the isoprenoid metabolism of the parasite. The inhibitory effects on proliferation and cell cycle without inducing DNA fragmentation or mitochondrial dysfunction raise questions about the specific targets and pathways affected by exogenous trans, trans-farnesol. The identification of the farnesene synthase gene provides a molecular basis for understanding the synthesis of related isoprenoids in Leishmania. Further exploration of these mechanisms may contribute to the development of novel therapeutic strategies against Leishmania infections.

Funder

Fundação Oswaldo Cruz

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

Frontiers Media SA

Subject

Infectious Diseases,Microbiology (medical),Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3