Countering the Deleterious Effects of Electromagnetic Pulse

Author:

Sands Timothy

Abstract

Robot systems like automated shipping swinging robots, wire transducer sensors and even computer indigenous time sensors (amongst others) often use oscillating circuits such as the famous van der Pol system, while this manuscript investigates protection of such sensor circuitry to spurious voltage spikes accompanying an electromagnetic pulse. These spurious voltages can lead to uncontrolled robot motion and even debilitation. A very brief discussion of electromagnetic pulses yields design parameters to evaluate circuit responses to realistic disturbing pulses. Recent research in nonlinear-adaptive methods to protect circuits are described to highlight the proposed novelty: utilization of feedback rules as adaptive mechanisms to modify the otherwise nonlinear feedforwards systems improving the results in recent literature. Feedback is iterated to select adaption parameters that simultaneously produce favorable circuit performance in addition to effective parameter identification inherent in the adaption (to provide meaningful parameter estimates to unspecified future applications). Spurious voltages were rapidly rejected with a mere 0.3% trajectory deviation, stabilizing quickly with a final (steady state) deviation of 0.01%. The demonstrated abilities to reject the deleterious spurious effects are compared to nominal figures of merit for timing accuracy of various computer systems to conclude the proposed methods are effective for some applications, but insufficient for others.

Publisher

Frontiers Media SA

Reference34 articles.

1. Solving the Synchronization of NTP Referenced SCADA Systems Connected to IEEE 1588 High-Availability Networks;Relyum. By Soce

2. Controlling Chaos-Forced van der Pol Equation;Cooper;Mathematics,2017

3. Time and Clock Synchronization;David,2014

4. Modeling of a bipedal locomotor using coupled nonlinear oscillators of Van der Pol;Dutra;Biol. Cybernetics,2003

5. Memorial to N. Minorsky;Flügge-Lotz;IEEE Trans. Automat. Contr.,1971

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3