Electrical Modelling of In-Vivo Impedance Spectroscopy of Nicotiana tabacum Plants

Author:

Bar-On Lee,Garlando Umberto,Sophocleous Marios,Jog Aakash,Motto Ros Paolo,Sade Nir,Avni Adi,Shacham-Diamand Yosi,Demarchi Danilo

Abstract

Electrical impedance spectroscopy has been suggested as a sensing method for plants. Here, a theoretical approach for electrical conduction via the plant stem is presented and validated, linking its living electrical characteristics to its internal structure. An electrical model for the alternating current conduction and the associated impedance in a live plant stem is presented. The model accounts for biological and geometrical attributes. It uses the electrically prevalent coupled transmission line model approach for a simplified description of the complicated vessel structure. It considers the electrode coupling to the plant stem (either Galvanic or Faradic), and accounts for the different interactions of the setup. Then the model is simplified using the lumped element approach. The model is then validated using a four-point probe impedance spectroscopy method, where the probes are galvanically coupled to the stem of Nicotiana tabacum plants. The electrical impedance data was collected continuously and the results exhibit an excellent fitting to the theoretical model, with a fitting error of less than 1.5% for data collected on various days and plants. A parametric evaluation of the fitting corresponds to the proposed physically based model, therefore providing a baseline for future plant sensor design.

Publisher

Frontiers Media SA

Reference45 articles.

1. Vascular Differentiation and Plant Hormones

2. Four Point Probe Electrical Spectroscopy Based System for Plant Monitoring;Bar-on;IEEE Int. Symp. Circuits Syst.

3. “In-Vivo Monitoring for Electrical Expression of Plant Living Parameters by an Impedance Lab System,” 2019 26th;Bar-On;IEEE Int. Conf. Electron. Circuits Syst.

4. “Analysis of Warburg’s impedance and its equivalent electric circuits;Barbero;Phys. Chem. Chem. Phys.,2017

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3