Quantitation of olefins in sustainable aviation fuel intermediates using principal component analysis coupled with vacuum ultraviolet spectroscopy

Author:

Kosir Shane,Feldhausen John,Bell David,Cronin Dylan,Boehm Randall,Heyne Joshua

Abstract

Olefins, a common intermediate from biomass conversion processes, are undesirable in jet fuel because of their poor thermal stability. This paper presents an approach for olefin quantitation using 2D gas chromatography coupled with vacuum ultraviolet spectroscopy. Principal component analysis was used to reduce the dimensionality of the spectroscopic data from a highly olefinic fuel intermediate. A principal component template was created that enabled olefin quantitation, which was compared to the existing GCxGC-VUV approach from the literature. The principal component method was able to identify and quantify trace amounts of cyclodienes, which were present at only 0.01 wt% in the fuel sample. The principal component approach also identifies species that fall outside of the GCxGC template. For instance, quantitation with the literature method resulted in an olefin concentration of 0.95 times that of the principal component method due to olefins falling outside of the expected GCxGC regions. The principal component results were compared with 13C and 1H NMR data, which confirmed that the fuel had a high concentration of olefins and alkanes with little aromatic content.

Funder

Federal Aviation Administration

U.S. Department of Energy

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3