Author:
Yamashita Masatoshi,Shou Qiulu,Mizuno Yoshifumi
Abstract
IntroductionChronotype refers to individual preference in circadian cycles and is associated with psychiatric problems. It is mainly classified into early (those who prefer to be active in the morning and sleep and wake up early) and late (those who prefer to be active in the evening and sleep and wake up late) chronotypes. Although previous research has demonstrated associations between chronotype and cognitive function and brain structure in adults, little is known regarding these associations in children. Here, we aimed to investigate the relationship between chronotype and cognitive function in children. Moreover, based on the significant association between chronotype and specific cognitive functions, we extracted regions-of-interest (ROI) and examined the association between chronotype and ROI volumes.MethodsData from 4,493 children (mean age of 143.06 months) from the Adolescent Brain Cognitive Development Study were obtained, wherein chronotype (mid-sleep time on free days corrected for sleep debt on school days) was assessed by the Munich Chronotype Questionnaire. Subsequently, the associations between chronotype, cognitive function, and ROI volumes were evaluated using linear mixed-effects models.ResultsBehaviorally, chronotype was negatively associated with vocabulary knowledge, reading skills, and episodic memory performance. Based on these associations, the ROI analysis focused on language-related and episodic memory-related areas revealed a negative association between chronotype and left precentral gyrus and right posterior cingulate cortex volumes. Furthermore, the precentral gyrus volume was positively associated with vocabulary knowledge and reading skills, while the posterior cingulate cortex volume was positively associated with episodic memory performance.DiscussionThese results suggest that children with late chronotype have lower language comprehension and episodic memory and smaller brain volumes in the left precentral gyrus and right posterior cingulate cortex associated with these cognitive functions.