Reduced eye optical quality contributes to worse chromatic thresholds in aging

Author:

Costa Marcelo Fernandes,Rego Livia Soledade,Henriques Leonardo Dutra,Martins Gaddi Carlo,Souza Givago Silva

Abstract

PurposeAging causes substantial changes in the intraocular lens, which leads to a reduction in chromatic perception. We aimed to measure the ocular light dispersion component in relation to the reduction in color vision by aging.MethodsIntraocular straylight was quantified psychophysically by C-Quant for light dispersion [Log(s)], reliability of the results (ESD), and psychometric sampling quality (Q). The Cambridge Color Test Trivector protocol measured the chromaticity thresholds for protan, deutan, and tritan color confusion axis in CIE 1976 u’ v’ units. We tested 224 subjects aged 24–68 years (106 men) with normal best-corrected visual acuity and without clinical evidence of cataracts.ResultsA significant positive correlation was found between ocular dispersion of light and chromaticity thresholds for protan (r = 0.42; p < 0.001), deutan (r = 0.49; p < 0.001) and tritan (r = 0.51; p < 0.0001) color confusion axes with a moderate effect size (η2 = 0.39). However, a weak contribution of the logarithm of the straylight in predicting the chromaticity threshold for protan (b = 0.15; p = 0.025), deutan (b = 0.27; p = 0.001) and tritan (b = 0.21; p = 0.001) color confusion axes was verified in the regression coefficients. The other two measurement quality parameters estimated in the C-Quant were not correlated with chromaticity thresholds, suggesting that there are no problems with the quality of the measurement performed.ConclusionAn increase in ocular light dispersion that occurs physiologically with aging negatively impacts the chromaticity threshold in a similar manner across all three color confusion axes. The weak regression effects suggest that neural rather than optical processes were more related to the reduction in chromaticity in aging.

Publisher

Frontiers Media SA

Subject

Cellular and Molecular Neuroscience,Cognitive Neuroscience,Sensory Systems

Reference28 articles.

1. Crystalline lens optical dysfunction through aging.;Alio;Ophthalmology,2005

2. Contrast sensitivity, healthy aging and noise.;Allard;Vis. Res.,2013

3. Optical aberrations and the aging eye.;Artal;Int. Ophthalmol. Clin.,2003

4. Color vision changes in normal aging;Barbur;Handbook of color psychology,2016

5. Two phases of V1 activity for visual recognition of natural images.;Camprodon;J. Cogn. Neurosci.,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3