Acute unilateral vestibular neuritis contributes to alterations in vestibular function modulating circumvention around obstacles: A pilot study suggesting a role for vestibular signals in the spatial perception of orientation during circumvention

Author:

Allum John,Rust Heiko Mario,Honegger Flurin

Abstract

BackgroundWalking among crowds avoiding colliding with people is described by patients with vestibular disorders as vertigo-inducing. Accurate body motion while circumventing an impeding obstacle in the gait pathway is dependent on an integration of multimodal sensory cues. However, a direct role of vestibular signals in spatial perception of distance or orientation during obstacle circumvention has not been investigated to date.Materials and methodsWe examined trunk yaw motion during circumvention in patients with acute unilateral vestibular loss (aUVL) and compared their results with age-matched healthy controls (HCs). Subjects performed five gait tasks with eyes open two times: walk 6 m in total, but after 3 m, circumvent to the left or right, as closely as possible, a cylindrical obstacle representing a person, and then veer back to the original path; walk 6 m, but after left and right circumvention at 3 m, veer, respectively, to the right, and left 45 deg; and walk 6 m without circumvention. Trunk yaw angular velocities (YAVs) were measured using a gyroscope system.ResultsYaw angular velocity peak amplitudes approaching to, and departing from, the circumvented object were always greater for patients with aUVL compared to HCs, regardless of whether passing was to the aUVLs’ deficit or normal side. The departing peak YAV was always greater, circa 52 and 87%, than the approaching YAV for HCs when going straight and veering 45 deg (p ≤ 0.0006), respectively. For patients with aUVL, departing velocities were marginally greater (12%) than approaching YAVs when going straight (p < 0.05) and were only 40% greater when veering 45 deg (p = 0.05). The differences in departing YAVs resulted in significantly lower trajectory-end yaw angles for veering trials to the deficit side in patients with aUVL (34 vs. 43 degs in HCs).ConclusionThe results demonstrate the effects of vestibular loss on yaw velocity control during the three phases of circumvention. First, approaching an obstacle, a greater YAV is found in patients with aUVL. Second, the departing YAV is found to be less than in HCs with respect to the approaching velocity, resulting in larger deficit side passing yaw angles. Third, patients with UVLs show yaw errors returning to the desired trajectory. These results could provide a basis for rehabilitation protocols helping to avoid collisions while walking in crowded spaces.

Publisher

Frontiers Media SA

Subject

Cellular and Molecular Neuroscience,Cognitive Neuroscience,Sensory Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3