Challenges in drug discovery and description targeting Leishmania spp.: enzymes, structural proteins, and transporters

Author:

Mendoza-León Alexis,Serrano G. María Luisa,Ponte-Sucre Alicia

Abstract

Leishmaniasis is a complex tropical disease caused by the protozoan parasite Leishmania spp. Classical chemotherapy includes pentavalent antimonial; however, pentamidine, amphotericin B, and miltefosine have been used. Chemo-resistance remains a risk for successful treatment; thus, target identification and development of selective drugs remain a priority in controlling this disease. Evidence indicates that 6-phosphogluconate dehydrogenase (6PGDH), β-tubulin protein, and ATP-dependent transporters (ABCs-T) are potential targets to be addressed. The pentose phosphate pathway key enzyme 6PGDH is essential for protecting kinetoplastid parasites from oxidative stress and differs from the mammalian host enzyme (<35% AA sequence identity). An optimized 3D model has been used to select high -affinity compounds toward the enzyme through virtual screening and subsequent evaluation in vivo. In kinetoplasts, tubulins are highly conserved proteins essential for microtubule formation. However, compared to other eukaryotic cells, there is a differential susceptibility of kinetoplastid proteins to antimicrotubular agents, e.g., colchicine resistance. A comparison of experimental models between bovine and Leishmania β-tubulin protein allowed us to identify structural modification products of various amino acid substitutions, which hinder the access of colchicine to the binding pocket of the Leishmania protein. Similar changes are found in the β-tubulin sequence of other kinetoplastids such as Trypanosoma cruzi, T. brucei, and T. evansi. The evaluation of the β-tubulin protein as a therapeutic target and the compounds that selectively interact with it was carried out using in silico approaches. The activities of ABC-Transporters are related to the main causes of drug resistance, and the collected evidence suggests that for the ABC-Transporter blocker glibenclamide, there is a: (1) differential susceptibility of Leishmania spp. vs. macrophages; (2) greater susceptibility of axenic amastigotes vs. promastigotes; and (3) glibenclamide-glucantime synergistic drug interaction in macrophage-infected cells. Herein, we discuss the potential value of designing ABC-Transporter blockers for combination therapy in the treatment of leishmaniasis. The examples mentioned above highlight the importance of the search for new therapeutic targets and pharmacophores for the design of alternative treatments for the disease.

Publisher

Frontiers Media SA

Subject

Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3