Pharmacology and early ADMET data of corallopyronin A, a natural product with macrofilaricidal anti-wolbachial activity in filarial nematodes

Author:

Ehrens Alexandra,Schiefer Andrea,Krome Anna K.,Becker Tim,Rox Katharina,Neufeld Helene,Aden Tilman,Wagner Karl G.,Müller Rolf,Grosse Miriam,Stadler Marc,König Gabriele M.,Kehraus Stefan,Alt Silke,Hesterkamp Thomas,Hübner Marc Peter,Pfarr Kenneth,Hoerauf Achim

Abstract

Corallopyronin A (CorA), a natural product antibiotic of Corallococcus coralloides, inhibits the bacterial DNA-dependent RNA polymerase. It is active against the essential Wolbachia endobacteria of filarial nematodes, preventing development, causing sterility and killing adult worms. CorA is being developed to treat the neglected tropical diseases onchocerciasis and lymphatic filariasis caused by Wolbachia-containing filariae. For this, we have completed standard Absorption, Distribution, Metabolism, Excretion and Toxicity (ADMET) studies. In Caco-2 assays, CorA had good adsorption values, predicting good transport from the intestines, but may be subject to active efflux. In fed-state simulated human intestinal fluid (pH 5.0), CorA half-life was >139 minutes, equivalent to the stability in buffer (pH 7.4). CorA plasma-stability was >240 minutes, with plasma protein binding >98% in human, mouse, rat, dog, mini-pig and monkey plasma. Clearance in human and dog liver microsomes was low (35.2 and 42 µl/min/mg, respectively). CorA was mainly metabolized via phase I reactions, i.e., oxidation, and to a minimal extent via phase II reactions. In contrast to rifampicin, CorA does not induce CYP3A4 resulting in a lower drug-drug-interaction potential. Apart from inhibition of CYP2C9, no impact of CorA on enzymes of the CYP450 system was detected. Off-target profiling resulted in three hits (inhibition/activation) for the A3 and PPARγ receptors and COX1 enzyme; thus, potential drug-drug interactions could occur with antidiabetic medications, COX2 inhibitors, angiotensin AT1 receptor antagonists, vitamin K-antagonists, and antidepressants. In vivo pharmacokinetic studies in Mongolian gerbils and rats demonstrated excellent intraperitoneal and oral bioavailability (100%) with fast absorption and high distribution in plasma. No significant hERG inhibition was detected and no phototoxicity was seen. CorA did not induce gene mutations in bacteria (Ames test) nor chromosomal damage in human lymphocytes (micronucleus test). Thus, CorA possesses an acceptable in vitro early ADMET profile; supported by previous in vivo experiments in mice, rats and Mongolian gerbils in which all animals tolerated CorA daily administration for 7-28 days. The non-GLP package will guide selection and planning of regulatory-conform GLP models prior to a first-into-human study.

Funder

Deutsches Zentrum für Infektionsforschung

Deutsche Forschungsgemeinschaft

Bundesministerium für Bildung und Forschung

Publisher

Frontiers Media SA

Subject

Immunology

Reference80 articles.

1. Lymphatic filariasis and onchocerciasis;Taylor;Lancet,2010

2. Progress report on the elimination of human onchocerciasis, 2016-2017;Wkly Epidemiol Rec,2017

3. Onchocerciasis: WHO (2018)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3