Retrospective on molecular assay design for detecting pan-orthopox viruses and prospective on mpox laboratory preparedness and readiness

Author:

Yeh Kenneth B.,Powers Michael D.,Patel Ami,Parekh Falgunee,Tseng Ashley S.,Bradford Elaine,Parker Kyle,Soong Ricky,Olinger Gene,Mombo Illich

Abstract

The landscape of in vitro diagnostic (IVD) devices encompasses a broad range of tests that have been used to detect and diagnose pathogens, especially tropical diseases, for decades. The COVID-19 pandemic exemplified the greater need for bringing IVDs from the laboratory directly to the consumer, and recent outbreaks such as mpox, Sudan ebolavirus, and Marburg virus further reinforce this need. The increased emergence of tropical disease outbreaks requires more agile development, higher performance, and mass production of IVD devices. Furthermore, lessons learned in previous device developments can sometimes be used to accelerate new disease diagnostic applications. As an example, we describe one case history of an earlier pan-orthopox viral assay that detected smallpox variola and vaccinia strains, and also discerned related strains including mpox. This work established the foundation for the molecular detection of orthopox viruses, which could be mobilized to address public health needs once an emergency declaration was made that opened the FDA pathway for issuing an emergency use authorization for the use of these assays. Thus, the utilization of knowledge from earlier investments was shown to enhance preparedness and readiness. Here in this retrospective, we elaborate on the processes that enable this approach, including multi-disciplinary and multisectoral collaborations to accomplish a holistic, one health world.

Publisher

Frontiers Media SA

Subject

Immunology

Reference42 articles.

1. High-priority target product profiles for new tuberculosis diagnostics: report of a consensus meeting2014

2. Significance of high-containment biological laboratories performing work during the COVID-19 pandemic: biosafety level-3 and -4 labs;Yeh;Front Bioeng Biotechnol,2021

3. Saliva-based molecular testing for SARS-CoV-2 that bypasses RNA extraction;Ranoa;biorxiv,2020

4. Biotechnology and biodefense enterprise: an industry perspective on defence acquisition;Yeh;Global Security: Health Sci Policy,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3