Author:
Mondal Agastya,Vásquez Váleri N.,Marshall John M.
Abstract
Mosquito-borne diseases such as malaria continue to pose a major global health burden, and the impact of currently-available interventions is stagnating. Consequently, there is interest in novel tools to control these diseases, including gene drive-modified mosquitoes. As these tools continue to be refined, decisions on whether to implement them in the field depend on their alignment with target product profiles (TPPs) that define product characteristics required to achieve desired entomological and epidemiological outcomes. TPPs are increasingly being used for malaria and vector control interventions, such as attractive targeted sugar baits and long-acting injectable drugs, as they progress through the development pipeline. For mosquito gene drive products, reliable predictions from mathematical models are an essential part of these analyses, as field releases could potentially be irreversible. Here, we review the prior use of mathematical models in developing TPPs for malaria and vector control tools and discuss lessons from these analyses that may apply to mosquito gene drives. We recommend that, as gene drive technology gets closer to field release, discussions regarding target outcomes engage a wide range of stakeholders and account for settings of interest and vector species present. Given the relatively large number of parameters that describe gene drive products, machine learning approaches may be useful to explore parameter space, and an emphasis on conservative fitness estimates is advisable, given the difficulty of accurately measuring these parameters prior to field studies. Modeling may also help to inform the risk, remediation and cost dimensions of mosquito gene drive TPPs.
Funder
Bill and Melinda Gates Foundation
Defense Advanced Research Projects Agency
University of California, Irvine
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献