Discovery of pyrazolopyrrolidinones as potent, broad-spectrum inhibitors of Leishmania infection

Author:

Kavouris John A.,McCall Laura-Isobel,Giardini Miriam A.,De Muylder Geraldine,Thomas Diane,Garcia-Pérez Adolfo,Cantizani Juan,Cotillo Ignacio,Fiandor Jose M.,McKerrow James H.,De Oliveira Camila I.,Siqueira-Neto Jair L.,González Silvia,Brown Lauren E.,Schaus Scott E.

Abstract

IntroductionLeishmaniasis is a parasitic disease that affects more than 1 million people worldwide annually, predominantly in resource-limited settings. The challenge in compound development is to exhibit potent activity against the intracellular stage of the parasite (the stage present in the mammalian host) without harming the infected host cells. We have identified a compound series (pyrazolopyrrolidinones) active against the intracellular parasites of Leishmania donovani and L. major; the causative agents of visceral and cutaneous leishmaniasis in the Old World, respectively.MethodsIn this study, we performed medicinal chemistry on a newly-discovered antileishmanial chemotype, with over 100 analogs tested. Studies included assessments of antileishmanial potency, toxicity towards host cells, and in vitro ADME screening of key drug properties.Results and discussionMembers of the series showed high potency against the deadliest form, visceral leishmaniasis (approximate EC50 ≥ 0.01 µM without harming the host macrophage up to 10.0 µM). In comparison, the most efficient monotherapy treatment for visceral leishmaniasis is amphotericin B, which presents similar activity in the same assay (EC50 = 0.2 µM) while being cytotoxic to the host cell at 5.0 µM. Continued development of this compound series with the Discovery Partnership with Academia (DPAc) program at the GlaxoSmithKline Diseases of the Developing World (GSK DDW) laboratories found that the compounds passed all of GSK’s criteria to be defined as a potential lead drug series for leishmaniasis.ConclusionHere, we describe preliminary structure-activity relationships for antileishmanial pyrazolopyrrolidinones, and our progress towards the identification of candidates for future in vivo assays in models of visceral and cutaneous leishmaniasis.

Funder

GlaxoSmithKline

National Institutes of Health

Publisher

Frontiers Media SA

Subject

Immunology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3