Phyto-fabricated Nanoparticles and Their Anti-biofilm Activity: Progress and Current Status

Author:

Das Puja,Ghosh Sayantan,Nayak Bismita

Abstract

Biofilm is the self-synthesized, mucus-like extracellular polymeric matrix that acts as a key virulence factor in various pathogenic microorganisms, thereby posing a serious threat to human health. It has been estimated that around 80% of hospital-acquired infections are associated with biofilms which are found to be present on both biotic and abiotic surfaces. Antibiotics, the current mainstream treatment strategy for biofilms are often found to be futile in the eradication of these complex structures, and to date, there is no effective therapeutic strategy established against biofilm infections. In this regard, nanotechnology can provide a potential platform for the alleviation of this problem owing to its unique size-dependent properties. Accordingly, various novel strategies are being developed for the synthesis of different types of nanoparticles. Bio-nanotechnology is a division of nanotechnology which is gaining significant attention due to its ability to synthesize nanoparticles of various compositions and sizes using biotic sources. It utilizes the rich biodiversity of various biological components which are biocompatible for the synthesis of nanoparticles. Additionally, the biogenic nanoparticles are eco-friendly, cost-effective, and relatively less toxic when compared to chemically or physically synthesized alternatives. Biogenic synthesis of nanoparticles is a bottom-top methodology in which the nanoparticles are formed due to the presence of biological components (plant extract and microbial enzymes) which act as stabilizing and reducing agents. These biosynthesized nanoparticles exhibit anti-biofilm activity via various mechanisms such as ROS production, inhibiting quorum sensing, inhibiting EPS production, etc. This review will provide an insight into the application of various biogenic sources for nanoparticle synthesis. Furthermore, we have highlighted the potential of phytosynthesized nanoparticles as a promising antibiofilm agent as well as elucidated their antibacterial and antibiofilm mechanism.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3