The Perspective on Bio-Nano Interface Technology for Covid-19

Author:

Kamaraj Sathish-Kumar

Abstract

The field of bio-nano interfaces paves the way for a better understanding, development, and implementation of the advanced biotechnological process. Interfacing biomolecules with the nanomaterials will result in the development of new tools and techniques that, in turn, will enable to explore the fundamental process at the nano level and fabricate cost-effective portable devices. Fascinating biomolecules like DNA, RNA and proteins in the regime of nanoscale are intelligent materials that are capable of storing the information and controlling the basic structure and function of the complex biological systems. Following this concept, the current pandemic situation would be a natural selection process, where the selective pressure is on the ssRNA of Covid-19 to choose the suitable progeny for survival. Consequently, the interaction of human DNA invoking response with Covid-19 happens at the nanoscale and it could be a better candidate to provoke combat against the virus. The extent of this interaction would give us the insights at the nanotechnological level to tackle the prevention, diagnosis and treatment for Covid-19. Herein, the possible features and obstacles in Covid-19 and a probable solution from the advent of nanotechnology are discussed to address the current necessity. Moreover, the perspective sustainable green graph mask that can be prepared using green plant extract/graphene (Bio-Nano composite mask) is suggested for the possible protection of virus-like Covid-19. The composite material will not only effectively trap the virus but also inactivate the virus due to the presence of antiviral compounds in the plant extracts.

Publisher

Frontiers Media SA

Reference121 articles.

1. Development of CRISPR as an antiviral strategy to combat SARS-CoV-2 and influenza;Abbott;Cell,2020

2. SARS-CoV-2 genetic variations associated with COVID-19 severity;Aiewsakun;MedRxiv,2020

3. “Nanoparticle-based vaccines against respiratory viruses,” Al-HalifaS. GauthierL. ArpinD. BourgaultS. ArchambaultD. 30733717Frontiers in Immunology2019

4. Theory, simulations and the design of functionalized nanoparticles for biomedical applications: a soft matter perspective;Angioletti-Uberti;NPJ Comput. Mater,2017

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3