Statistical optimization for greener synthesis of multi-efficient silver nanoparticles from the Hypocrea lixii GGRK4 culture filtrate and their ecofriendly applications

Author:

Gupta Guddu Kumar,Koli Devesh,Kapoor Rajeev Kumar

Abstract

The culture filtrate of Hypocrea lixii GGRK4 played a vital role as a reducing and stabilizing agent in the mycosynthesis of silver nanoparticles (AgNPs) using silver nitrate (AgNO3). The extracellular extract derived from fungi emerged as a noteworthy option for synthesizing AgNPs due to its potential composition of metabolites, including enzymes and other bioactive substances. Hence, the presence of a dark brown color serves as a key indicator for the biosynthesis of AgNPs through the reduction of Ag (I) ions to Ag by the fungal culture filtrate. To facilitate the synthesis of AgNPs, a combination of hybrid technologies, specifically the “one factor at a time” approach and statistical tools such as response surface methodology, was used using a face-centered central composite design (FCCCD). Utilizing a modified CX medium with pH of 5.02 supported the fungi synthesizing AgNPs at a temperature of 30°C. The multi-efficient AgNPs were characterized through various techniques, including UV–visible spectrophotometry, zeta size and potential analysis using a zeta size analyzer, transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and fluorescence spectroscopy. The biosynthesized AgNPs have significant associated functional groups, revealed by FTIR analysis. TEM histogram analysis showed that these multi-efficient AgNPs have a size of 17.34 nm. Similarly, they have emission and excitation spectra of 450 nm and 390 nm, respectively, revealed by fluorescence spectrum analysis. Compared to the standard, the biosynthesized AgNPs have significant antibacterial and free radical scavenging properties and dye degradation capability. Additionally, the half-maximal inhibitory concentration (IC50) value was found statistically significant based on t-test analysis. Finally, the biosynthesized AgNPs could be used in potential applications encompassing ecofriendly degradation, antimicrobial activity, and therapeutic applications, such as free radical scavenging properties.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3