Accuracy and reliability analysis of a machine learning based segmentation tool for intertrochanteric femoral fracture CT

Author:

Wang Dongdong,Wu Zhenhua,Fan Guoxin,Liu Huaqing,Liao Xiang,Chen Yanxi,Zhang Hailong

Abstract

IntroductionThree-dimensional (3D) reconstruction of fracture fragments on hip Computed tomography (CT) may benefit the injury detail evaluation and preoperative planning of the intertrochanteric femoral fracture (IFF). Manually segmentation of bony structures was tedious and time-consuming. The purpose of this study was to propose an artificial intelligence (AI) segmentation tool to achieve semantic segmentation and precise reconstruction of fracture fragments of IFF on hip CTs.Materials and MethodsA total of 50 labeled CT cases were manually segmented with Slicer 4.11.0. The ratio of training, validation and testing of the 50 labeled dataset was 33:10:7. A simplified V-Net architecture was adopted to build the AI tool named as IFFCT for automatic segmentation of fracture fragments. The Dice score, precision and sensitivity were computed to assess the segmentation performance of IFFCT. The 2D masks of 80 unlabeled CTs segmented by AI tool and human was further assessed to validate the segmentation accuracy. The femoral head diameter (FHD) was measured on 3D models to validate the reliability of 3D reconstruction.ResultsThe average Dice score of IFFCT in the local test dataset for “proximal femur”, “fragment” and “distal femur” were 91.62%, 80.42% and 87.05%, respectively. IFFCT showed similar segmentation performance in cross-dataset, and was comparable to that of human expert in human-computer competition with significantly reduced segmentation time (p < 0.01). Significant differences were observed between 2D masks generated from semantic segmentation and conventional threshold-based segmentation (p < 0.01). The average FHD in the automatic segmentation group was 47.5 ± 4.1 mm (41.29∼56.59 mm), and the average FHD in the manual segmentation group was 45.9 ± 6.1 mm (40.34∼64.93 mm). The mean absolute error of FHDs in the two groups were 3.38 mm and 3.52 mm, respectively. No significant differences of FHD measurements were observed between the two groups (p > 0.05). All ICCs were greater than 0.8.ConclusionThe proposed AI segmentation tool could effectively segment the bony structures from IFF CTs with comparable performance of human experts. The 2D masks and 3D models generated from automatic segmentation were effective and reliable, which could benefit the injury detail evaluation and preoperative planning of IFFs.

Funder

Guangdong Basic and Applied Basic Research Foundation

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Surgery

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3