Development of nomograms predictive of anastomotic leakage in patients before minimally invasive McKeown esophagectomy

Author:

Chen Jianqing,Xu Jinxin,He Jianbing,Hu Chao,Yan Chun,Wu Zhaohui,Li Zhe,Duan Hongbing,Ke Sunkui

Abstract

PurposeThe present study aims to identify factors related to anastomotic leakage before esophagectomy and to construct a prediction model.MethodsA retrospective analysis of 285 patients who underwent minimally invasive esophagectomy (MIE). An absolute shrinkage and selection operator was applied to screen the variables, and predictive models were developed using binary logistic regression.ResultsA total of 28 variables were collected in this study. LASSO regression analysis, combined with previous literature and clinical experience, finally screened out four variables, including aortic calcification, heart disease, BMI, and FEV1. A binary logistic regression was conducted on the four predictors, and a prediction model was established. The prediction model showed good discrimination and calibration, with a C-statistic of 0.67 (95% CI, 0.593–0.743), a calibration curve fitting a 45° slope, and a Brier score of 0.179. The DCA demonstrated that the prediction nomogram was clinically useful. In the internal validation, the C-statistic still reaches 0.66, and the calibration curve has a good effect.ConclusionsWhen patients have aortic calcification, heart disease, obesity, and a low FEV1, the risk of anastomotic leakage is higher, and relevant surgical techniques can be used to prevent it. Therefore, the clinical prediction model is a practical tool to guide surgeons in the primary prevention of anastomotic leakage.

Publisher

Frontiers Media SA

Subject

Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3