Superior Enhancement of Cutaneous Microcirculation Due to “Cyclic” Application of a Negative Pressure Wound Therapy Device in Humans – Local and Remote Effects

Author:

Sogorski Alexander,Becker Amira,Dadras Mehran,Wallner Christoph,Wagner Johannes Maximillian,Glinski Maxi v,Lehnhardt Marcus,Behr Björn

Abstract

ObjectivesDespite a common utilization of “Negative Pressure Wound Therapy” (NPWT) Devices in a wide range of specialties, some of the basic mechanisms of action of the techniques are still on debate. Conflicting results from prior studies demonstrate our lack of understanding how wound-bed perfusion or cutaneous microcirculation is affected by NPWT.MethodsWe conducted a prospective randomized study which included 45 healthy subjects to further investigate the acute effects of NPWT on cutaneous microcirculation underneath the applied dressing. Three modes of application, namely, continuous, intermittent, cyclic, were tested. Amongst others, measurements of elicited surface pressure and a comprehensive microcirculatory analysis were carried out by utilizing an O2C-device. For the detection of (systemic) remote effects, perfusion changes of the contra-lateral thigh were evaluated.ResultsAll three tested modes of application led to a significant (p < 0.05) improvement in local tissue perfusion with an increased blood flow of max +151% and tissue oxygen saturation of +28.2% compared to baseline values. Surface pressure under the dressing significantly increased up to 29.29 mmHg due to the activation of the NPWT device. Continuous, intermittent, and cyclic application of negative pressure were accurately sensed by participants, resulting in reported pain values that mirrored the different levels of applied suction. Although the cyclic application mode showed the most pronounced effects regarding microcirculatory changes, no statistical significance between groups was observed.ConclusionWe could demonstrate a significant improvement of cutaneous microcirculation under an applied NPWT dressing with favorable effects due to cyclic mode of application. An increased surface pressure leads to a better venous drainage of the tissue, which was shown to increase arterial inflow with a consecutive improvement of oxygen supply. Further research is warranted to evaluate our findings regarding wound bed perfusion in the clinical field with respect to formation of granulation tissue and wound healing.

Funder

Medizinische Fakult�t, Ruhr-Universit�t Bochum

Publisher

Frontiers Media SA

Subject

Surgery

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3