Simultaneous Endoscopic Endonasal Decompression of the Optic Canal, Superior Orbital Fissure, and Proper Orbital Apex for Traumatic Orbital Apex Syndrome: Surgical Anatomy and Technical Note

Author:

Liu Jianfeng,Zhao Jianhui,Wang Yibei,Wang Zhijun,Li Rui,Chen Zhongyan,Zhao Yu,Han Jun,Yang Dazhang

Abstract

ObjectivesTraumatic orbital apex syndrome (TOAS) is an uncommon but severe ocular complication of craniomaxillofacial fracture. The optimal surgical strategy for TOAS has not been determined. To investigate the endoscopic anatomy of the orbital apex region, propose a protocol for simultaneous endoscopic endonasal decompression of the optic canal, superior orbital fissure, and proper orbital apex (EEDCFA) for TOAS and report its use in two patients.MethodsAn endoscopic endonasal approach was utilized to dissect the orbital apex region in two silicon-injected adult cadaveric heads. The details of the procedure used for decompression of the orbital apex were determined. The effects of this procedure were determined in two patients with TOAS who underwent simultaneous decompression of the optic canal, superior orbital fissure, and proper orbital apex.ResultsThe orbital apex consisted of three portions, the contents of the optic canal superomedially; the contents of the superior orbital fissure inferolaterally; and the converging portion, or proper orbital apex, anteriorly. From an endoscopic endonasal approach, the optic nerve, superior orbital fissure, and orbital apex convergence prominences were found to form a π-shaped configuration. This π-shaped configuration was indicative of the orbital apex and was an important landmark for decompression of the orbital apex. Endonasal decompression of the orbital apex in the two patients resulted in the satisfactory recovery of extraocular mobility, with no surgical complications.ConclusionsEEDCFA is feasible, effective, and safe for patients with TOAS caused by direct compression of displaced fracture segments. The π-shaped configuration is a valuable landmark for EEDCFA.

Funder

Natural Science Foundation of Beijing Municipality

Publisher

Frontiers Media SA

Subject

Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3