Quantitative assessment and objective improvement of the accuracy of neurosurgical planning through digital patient-specific 3D models

Author:

Hanalioglu Sahin,Gurses Muhammet Enes,Baylarov Baylar,Tunc Osman,Isikay Ilkay,Cagiltay Nergiz Ercil,Tatar Ilkan,Berker Mustafa

Abstract

ObjectiveNeurosurgical patient-specific 3D models have been shown to facilitate learning, enhance planning skills and improve surgical results. However, there is limited data on the objective validation of these models. Here, we aim to investigate their potential for improving the accuracy of surgical planning process of the neurosurgery residents and their usage as a surgical planning skill assessment tool.MethodsA patient-specific 3D digital model of parasagittal meningioma case was constructed. Participants were invited to plan the incision and craniotomy first after the conventional planning session with MRI, and then with 3D model. A feedback survey was performed at the end of the session. Quantitative metrics were used to assess the performance of the participants in a double-blind fashion.ResultsA total of 38 neurosurgical residents and interns participated in this study. For estimated tumor projection on scalp, percent tumor coverage increased (66.4 ± 26.2%–77.2 ± 17.4%, p = 0.026), excess coverage decreased (2,232 ± 1,322 mm2–1,662 ± 956 mm2, p = 0.019); and craniotomy margin deviation from acceptable the standard was reduced (57.3 ± 24.0 mm–47.2 ± 19.8 mm, p = 0.024) after training with 3D model. For linear skin incision, deviation from tumor epicenter significantly reduced from 16.3 ± 9.6 mm–8.3 ± 7.9 mm after training with 3D model only in residents (p = 0.02). The participants scored realism, performance, usefulness, and practicality of the digital 3D models very highly.ConclusionThis study provides evidence that patient-specific digital 3D models can be used as educational materials to objectively improve the surgical planning accuracy of neurosurgical residents and to quantitatively assess their surgical planning skills through various surgical scenarios.

Publisher

Frontiers Media SA

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3