Regional divergent evolution of vegetation greenness and climatic drivers in the Sahel-Sudan-Guinea region: nonlinearity and explainable machine learning

Author:

Zeng Yelong,Jia Li,Menenti Massimo,Jiang Min,Zheng Chaolei,Bennour Ali,Lv Yunzhe

Abstract

IntroductionThe vegetation dynamics of the Sahel-Sudan-Guinea region in Africa, one of the largest transition zones between arid and humid zones, is of great significance for understanding regional ecosystem changes. However, a time-unvarying trend based on linear assumption challenges the overall understanding of vegetation greenness evolution and of tracking a complex ecosystem response to climate in the Sahel-Sudan-Guinea region.MethodsThis study first applied the ensemble empirical mode decomposition (EEMD) method to detect the time-varying trends in vegetation greenness based on normalized difference vegetation index (NDVI) data in the region during 2001–2020, and then identified the dominant climatic drivers of NDVI trends by employing explainable machine learning framework.ResultsThe study revealed an overall vegetation greening but a significant nonlinear spatio-temporal evolution characteristic over the region. Trend reversals, i.e., browning-to-greening and greening-to-browning, were dominant in approximately 60% of the study area. The browning-to-greening reversal was primarily observed in the southern Sahel, Congo Basin north of the Equator, and East Africa, with a breakpoint around 2008, while the greening-to-browning reversal was mainly observed in West Africa, with a breakpoint around 2011. The sustained greening primarily took place in northern Sahel, Central African Republic and South Sudan; while sustained browning clustered in central West Africa and Uganda, mainly in agricultural lands. Furthermore, the combination of Random Forest (RF) algorithm and the SHapley Additive exPlanations (SHAP) method could robustly model and reveal the relationships between the observed trends in NDVI and in climatic variables, also detected by applying EEMD. The results suggested that air temperature and precipitation were the most important climatic drivers controlling the NDVI trends across the Sahel-Sudan-Guinea region. The NDVI trends were more likely to have negative correlations with solar radiation and vapor pressure deficit in arid areas, while they could have positive correlations in humid areas. The study also found that large-scale climate changes induced by sea surface temperature (SST) anomalies had strong relationships with trend reversals in vegetation greenness at a sub-continental scale. These findings advanced the understanding of the impacts of climatic drivers on vegetation greenness evolution in the Sahel-Sudan-Guinea region.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3