Spatiotemporal approach for estimating potential CO2 sequestration by reforestation in the Korean Peninsula

Author:

Lee Sle-gee,Kim Hyun-Jun

Abstract

A forest is one of the carbon sinks in the terrestrial ecosystem; it is a major target for securing CO2 sequestration to achieve carbon neutrality. Reforestation is a forest management method that could attain carbon fixation and forest degradation recovery at the same time, but quantitative research has not been actively conducted. The purpose of this study is to identify the target areas for reforestation through changes in land cover in the Korean Peninsula and to quantify the potential CO2 sequestration effect of reforestation. According to the land cover change through satellite imagery, the area of settlements in the Republic of Korea (ROK) was the most dominant (+3,371 km2), and the main change occurred from cropland to settlements. The forest area increased by +1,544 km2 from 68,264 km2 in the 1980s to 69,809 km2 in the late 2010s. The forest decreased by 7,526 km2, accounting for 5.68% of the entire land area of the Democratic People's Republic of Korea (DPRK), and cropland increased by 5,222 km2 which is 5.12%. Assuming that the target of reforestation is an area whose land cover was a forest in the past and then converted to cropland, wetland, or bare ground, the area of the target decreased as the reference period was applied more recently. As a result of comparing the late 2000s to the late 2010s, the ROK's annual net carbon sequestration due to reforestation is predicted to be 10,833,600 Mg CO2 yr−1 in 2050 and 20,919,200 Mg CO2 yr−1 in 2070. In the DPRK, 14,236,800 Mg CO2 yr−1 in 2050 and 27,490,400 Mg CO2 yr−1 in 2070 were predicted. Reforestation in the Korean Peninsula was analyzed to have sufficient potential to secure a carbon sink, and the DPRK in particular was analyzed to be able to play a role in overseas reforestation.

Funder

Rural Development Administration

Publisher

Frontiers Media SA

Subject

Nature and Landscape Conservation,Environmental Science (miscellaneous),Ecology,Global and Planetary Change,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3