Trade-Offs in Phosphorus Acquisition Strategies of Five Common Tree Species in a Tropical Forest of Puerto Rico

Author:

Yaffar Daniela,Defrenne Camille E.,Cabugao Kristine G.,Kivlin Stephanie N.,Childs Joanne,Carvajal Niko,Norby Richard J.

Abstract

Tree species that are successful in tropical lowlands have different acquisition strategies to overcome soil phosphorus (P) limitations. Some of these strategies belowground include adjustments in fine-root traits, such as morphology, architecture, association with arbuscular mycorrhizal fungi, and phosphatase activity. Trade-offs among P-acquisition strategies are expected because of their respective carbon cost. However, empirical evidence remains scarce which hinders our understanding of soil P-acquisition processes in tropical forests. Here, we measured seven fine-root functional traits related to P acquisition of five common tree species in three sites of the Luquillo Experimental Forest in Puerto Rico. We then described species-specific P-acquisition strategies and explored the changes in fine-root trait expression from 6 months before to 6 months after two consecutive hurricanes, Irma and María, passed over the island. We found that variations in root trait expression were driven mainly by the large interspecific differences across the three selected sites. In addition, we revealed a trade-off between highly colonized fine roots with high phosphatase activity and fine roots that have a high degree of branching. Furthermore, the former strategy was adopted by pioneer species (Spathodea campanulata and Cecropia schreberiana), whereas the latter was adopted by non-pioneer species (mostly Dacryodes excelsa and Prestoea montana). Additionally, we found that root trait expression did not change comparing 6 months before and after the hurricanes, with the exception of root phosphatase activity. Altogether, our results suggest a combination of structural and physiological root traits for soil P acquisition in P-poor tropical soils by common tropical tree species, and show stability on most of the root trait expression after hurricane disturbances.

Funder

U.S. Department of Energy

Publisher

Frontiers Media SA

Subject

Nature and Landscape Conservation,Environmental Science (miscellaneous),Ecology,Global and Planetary Change,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3