Logging has legacy effects on the structure of soil fungal communities several decades after cessation in Western Cascade forest stands

Author:

Spencer Max W.,Roy Bitty A.,Thornton Tiffany E.,Silva Lucas C. R.,McGuire Krista L.

Abstract

IntroductionLogging impacts millions of hectares of forests globally every year, and not only affects tree cover, but also disrupts below-ground soil communities that are essential for forest ecosystems. Soil fungi are particularly vulnerable to such disturbances due to their reliance upon plant hosts as their source of carbon. Fluctuations within the major guilds of fungi important for forest function can have ramifications for plant communities and biogeochemical processes. We addressed questions about soil fungal communities in temperate forest stands with varying logging histories: (1) Do assembly patterns of soil fungal communities and functional guilds reflect historical differences in logging legacies? (2) Does sequencing of below-ground communities of fungi resemble the composition of surveys of fungal fruiting bodies? (3) How do fungal communities in the litter layer differ from those in the soil and do these assembly patterns change with logging history?MethodsOur study took place in the H. J. Andrews Experimental Forest in western Oregon, USA. We sampled soil and litter (Oi—Oe) in three sites with different logging histories: one clear cut in 1974, one selectively logged and thinned three times between 1974 and 2001, and one unlogged. We sequenced soil fungi separately for mineral soil samples and litter samples. Additionally, we compiled fruiting-body studies from 1972 through the present to compare with our eDNA samples.ResultsWe found that four decades after logging had ceased there were detectable signatures within the soil fungal communities that distinguished logged from unlogged sites, indicating a legacy that affects many generations of fungi (PERMANOVA; p < 0.001 for both soil and litter fungi). There were also significant differences between litter and mineral soil communities (PERMANOVA; p < 0.001) with higher relative abundances of pathogens within the litter layer and a greater proportion of mycorrhizal fungi in the soil.DiscussionThese results highlight the importance of including forest litter in studies, as entire guilds of fungi can be underestimated when considering a single fraction. Together, these results have repercussions for the regeneration of forests following logging, as the composition of fungal guilds important to plant functions do not fully recover even after decades of cessation.

Funder

University of Oregon

Publisher

Frontiers Media SA

Subject

Nature and Landscape Conservation,Environmental Science (miscellaneous),Ecology,Global and Planetary Change,Forestry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3