Dry matter dynamics and carbon flux along riverine forests of Gori valley, Western Himalaya

Author:

Bisht Soni,Bargali Surendra Singh,Bargali Kiran,Rawat Yashwant Singh,Rawat Gopal Singh

Abstract

IntroductionRiverine forests in the Himalaya represent a biodiverse, dynamic, and complex ecosystem that offers numerous ecosystem services to local and downstream communities and also contributes to the regional carbon cycle. However, these forests have not been assessed for their contribution to dry matter dynamics and carbon flux. We studied these parameters along three classes of riverine forests in eastern Uttarakhand, dominated by Macaranga, Alnus, and Quercus-Machilus forest.MethodsUsing volume equations, we assessed tree biomass, carbon storage, and sequestration in the study area.ResultsThe total standing tree biomass in Macaranga, Alnus, and Quercus-Machilus forest ranged from 256.6 to 558.1  Mg  ha−1, 460.7 to 485.8 Mg ha−1, and 508.6 to 692.1 Mg ha−1, respectively. A total of 77.6–79.6% of vegetation biomass was stored in the aboveground biomass and 20.4–22.4% in belowground plant parts across the riverine forests. The carbon stock in Macaranga forest ranged from 115.5 to 251.1 Mg ha−1, in Alnus forest from 207.3 to 218.6 Mg ha−1, and in Quercus-Machilus forest from 228.9 to 311.4 Mg ha−1. The mean annual litterfall was accounted maximum for Quercus-Machilus forest (5.94  ±  0.54 Mg ha−1 yr.−1), followed by Alnus (5.57  ±  0.31 Mg ha−1 yr.−1) and Macaranga forest (4.67  ±  0.39 Mg ha−1 yr.−1). The highest value of litterfall was recorded during summer (3.40  ±  0.01 Mg ha−1 yr.−1) and the lowest in winter (0.74  ±  0.01 Mg ha−1 yr.−1). The mean value of net primary productivity and carbon sequestration was estimated to be highest in Quercus-Machilus forest (15.8  ±  0.9 Mg ha−1 yr.−1 and 7.1  ±  0.9 Mg C ha−1 yr.−1, respectively) and lowest in Alnus forest (13.9  ±  0.3 Mg ha−1 yr.−1 and 6.1  ±  0.3 Mg C ha−1 yr.−1, respectively).DiscussionThe results highlight that riverine forests play a critical role in providing a large sink for atmospheric CO2. To improve sustainable ecosystem services and climate change mitigation, riverine forests must be effectively managed and conserved in the region.

Publisher

Frontiers Media SA

Subject

Nature and Landscape Conservation,Environmental Science (miscellaneous),Ecology,Global and Planetary Change,Forestry

Reference67 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3