Robust Estimation of Absorbing Root Surface Distributions From Xylem Water Isotope Compositions With an Inverse Plant Hydraulic Model

Author:

De Deurwaerder Hannes P. T.,Visser Marco D.,Meunier Félicien,Detto Matteo,Hervé-Fernández Pedro,Boeckx Pascal,Verbeeck Hans

Abstract

The vertical distribution of absorbing roots is one of the most influential plant traits determining plant strategy to access below ground resources. Yet little is known of natural variability in root distribution since collecting field data is challenging and labor-intensive. Studying stable water isotope compositions in plants could offer a cost-effective and practical solution to estimate the absorbing root surfaces distribution. However, such an approach requires developing realistic inverse modeling techniques that enable robust estimation of rooting distributions and associated uncertainty from xylem water isotopic composition observations. This study introduces an inverse modeling method that supports the assessment of the root allocation parameter (β) that defines the exponential vertical decay of a plants’ absorbing root surfaces distribution with soil depth. The method requires measurements obtained from xylem and soil water isotope composition, soil water potentials, and sap flow velocities when plants’ xylem water is sampled at a certain height above the rooting point. In a simulation study, we show that the approach can provide unbiased estimates of β and its associated uncertainty due to measuring errors and unmeasured environmental factors that can impact the xylem water isotopic data. We also recommend improving the accuracy and power of β estimation, highlighting the need for considering accurate soil water potential and sap flow monitoring. Finally, we apply the inverse modeling method to xylem water isotope data of lianas and trees collected in French Guiana. Our work shows that the inverse modeling procedure provides a robust analytical and statistical framework to estimate β. The method accounts for potential bias due to extraction errors and unmeasured environmental factors, which improves the viability of using stable water isotope compositions to estimate the distribution of absorbing root surfaces complementary to the assessment of relative root water uptake profiles.

Funder

FP7 Ideas: European Research Council

Publisher

Frontiers Media SA

Reference77 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3