Quantifying the contributions of climatic and human factors to vegetation net primary productivity dynamics in East Africa

Author:

Xu Minghui,Zhang Zhenke,Wang Yue,Liu Binglin

Abstract

As an important part of the terrestrial ecosystem, vegetation dynamics are subject to impacts from both climate change and human activities. Clarifying the driving mechanisms of vegetation variation is of great significance for regional ecological protection and achieving sustainable development goals. Here, net primary productivity (NPP) was used to investigate the spatiotemporal variability of vegetation dynamics from 2000 to 2020 in East Africa, and its correlations with climate factors. Furthermore, we utilized partial derivatives analysis and set up different scenarios to distinguish the relative contributions of climatic and human factors to NPP changes. The results revealed that NPP exhibited a significant increase with 4.16 g C/m2/a from 2000 to 2020 in East Africa, and an upward trend was detected across 71.06% of the study area. The average contributions of precipitation, temperature, and solar radiation to the NPP inter-annual variations in East Africa were 2.02, −1.09, and 0.31 gC⋅m–2⋅a–1, respectively. Precipitation made the greatest positive contribution among all of the climatic factors, while temperature made strong negative contributions. The contributions of climate change and human activities to NPP changes were 1.24 and 2.34 gC⋅m–2⋅a–1, respectively. Moreover, the contribution rate of human activities to NPP increase was larger than that of climate change, while the role of climate change in NPP decrease was larger than that of human activities. The findings of the study can provide new evidence for a deeper understanding of ecosystem stability and carbon cycling in East Africa, as well as a reference for decision-making and scientific support for ecological environmental protection.

Publisher

Frontiers Media SA

Reference58 articles.

1. Improved detection of abrupt change in vegetation reveals dominant fractional woody cover decline in Eastern Africa.;Abera;Remote Sens. Environ.,2022

2. Agricultural landscape change impact on the quality of land: An African continent-wide assessment in gained and displaced agricultural lands.;Akinyemi;Int. J. Appl. Earth Obs.,2022

3. Ecological footprint, economic complexity and natural resources rents in Latin America: empirical evidence using quantile regressions.;Alvarado;J. Clean. Prod.,2021

4. Future changes in precipitation extremes over East Africa based on CMIP6 models.;Ayugi;Water

5. Evaluation and projection of mean surface temperature using CMIP6 models over East Africa.;Ayugi;J. Afr. Earth Sci.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3