Current approaches for modeling ecosystem services and biodiversity in agroforestry systems: Challenges and ways forward

Author:

Rahman Muhammed Habib ur,Ahrends Hella Ellen,Raza Ahsan,Gaiser Thomas

Abstract

Limited modeling studies are available for the process-based simulation of ecosystem services (ESS) and biodiversity (BD) in agroforestry systems (AFS). To date, limited field scale AFs models are available to simulate all possible ESS and BD together. We conducted an extensive systematic review of available agroforestry (AF), BD, and soil erosion models for the simulation potential of seven most desirable ESS in AFS. Simple to complex AF models have an inherent limitation of being objective-specific. A few complex and dynamic AF models did not meet the recent interest and demands for the simulation of ESS under AFS. Further, many ESS modules especially soil erosion, GHGs emission, groundwater recharge, onsite water retention, nutrients and pesticide leaching, and BD are often missing in available AF models, while some existing soil erosion models can be used in combination with AF models. Likewise mechanistic and process-based BD diversity models are lacking or found limited simulation potential for ESS under AFS. However, further efforts of model development and improvement (integration and coupling) are needed for the better simulation of complex interactive processes belonging to ESS under AFS. There are different possibilities but a proficient modeling approach for better reliability, flexibility, and durability is to integrate and couple them into a process-based dynamic modular structure. Findings of the study further suggested that crop modeling frameworks (MFW) like SIMPLACE and APSIM could be potential ones for the integration and coupling of different suitable modeling approaches (AF, soil protection, GHGs emission, flood prevention, carbon sequestration, onsite water retention, ground recharge, nutrient leaching, and BD modules) in one platform for dynamic process based ESS estimation on daily basis at the field scale.

Funder

Bundesministerium für Bildung und Forschung

Publisher

Frontiers Media SA

Subject

Nature and Landscape Conservation,Environmental Science (miscellaneous),Ecology,Global and Planetary Change,Forestry

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3