Tradeoffs and synergies among ecosystem services, biodiversity conservation, and food production in coffee agroforestry

Author:

Mayorga Isabella,Vargas de Mendonça Jose Luiz,Hajian-Forooshani Zachary,Lugo-Perez Javier,Perfecto Ivette

Abstract

Concerns over the capacity of the world’s existing agricultural land to provide food for the global population under climate change and continued biodiversity loss have set the stage for a prevailing narrative of inherent tradeoffs with agricultural production. Coffee, a major export of tropical countries, offers a unique opportunity to examine how different management practices can lead to a variety of outcomes in food security, ecosystem services, and biodiversity conservation. Our study examined this intersection to identify tradeoffs and synergies using compiled data from Puerto Rico. At the island level, we analyzed data on coffee yield and planted area under shade or sun management. At the farm level, we analyzed management variables (percent shade cover, maximum canopy height, ground cover, and food crop richness), non-provisioning ecosystem services variables (total farm carbon storage, soil organic carbon storage, coffee plant carbon biomass, and hurricane resistance and resilience), and biodiversity variables (ant, bird, and lizard richness and abundance). At the island level, we found that planted area was the most significant predictor of total production, suggesting no obvious tradeoff between production and shade management in coffee farms. At the farm level, canopy cover of shade trees was negatively correlated with ground cover and positively correlated with food crop richness, suggesting a synergy between agroforestry and subsistence food production. We detected mostly synergies associated with ecosystem services, biodiversity conservation, and agroforestry management and no tradeoffs among ecosystem service and biodiversity parameters. Shade canopy cover significantly increased total carbon storage, coffee plant biomass, hurricane resistance, and bird species richness. Shade canopy height had a similar positive effect on total farm carbon storage while food crop richness had a positive effect on farm resilience following Hurricane Maria. Ground cover was positively associated with soil carbon storage and pest-controlling lizard abundance. Tradeoffs related to agroforestry management included an inverse relationship between ground cover and hurricane resistance and more dominance of an invasive ant species in farms with higher shade canopies. We discuss the implications of practicing agroforestry principles in this smallholder coffee system and highlight opportunities to contribute to more diversified food production systems that support biodiversity and ecosystem services.

Funder

U.S. Department of Agriculture

Publisher

Frontiers Media SA

Subject

Nature and Landscape Conservation,Environmental Science (miscellaneous),Ecology,Global and Planetary Change,Forestry

Reference99 articles.

1. Use of vegetation for slope protection: Root mechanical properties of some tropical plants.;Ali;Int. J. Phys. Sci.,2010

2. Shade tree Chloroleucon eurycyclum promotes coffee leaf rust by reducing uredospore wash-off by rain.;Avelino;Crop Prot.,2020

3. Pest-regulating networks of the coffee berry borer (Hypothenemus hampei) in agroforestry systems.;Beilhe;Crop Prot.,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3