Effects of biochar and wood ash amendments in the soil-water-plant environment of two temperate forest plantations

Author:

Moragues-Saitua Lur,Arias-González Ander,Blanco Fernando,Benito-Carnero Garazi,Gartzia-Bengoetxea Nahia

Abstract

Forest biomass is considered an alternative to fossil fuels in energy production, as part of global strategies for climate change mitigation. Application of by-products such as wood ash (WA) and biochar (BC) to soil could replace the nutrients removed by tree harvesting and could also increase soil carbon stocks. However, the extent to which these amendments can provide benefits depends on how the by-products interact with the soil-water-plant system. We studied the short-term responses of WA and BC application in two different mineral soil-water-plant systems in temperate forests: A. Typic Udorthent (TU) with mature Pinus radiata; B. Typic Dystrudept (TD) with young Quercus pyrenaica, to test the following hypotheses: (1) the application of WA and BC will increase nutrient uptake by plants, but (2) these products could induce toxicity in the soil-water-plant system, and (3) in case of no toxicity, plant biomass growth in these temperate forest soils will increase due to increased plant nutrient uptake. Biochar was applied at rates of 3.5, 10, and 20 Mg ha–1 and WA at rates of 1.5, 4.5, and 9 Mg ha–1 (calcium equivalent). A nitrogen enriched treatment was applied with the intermediate doses. Ecotoxicity testing indicated that WA and BC were not toxic, although Ni uptake increased in biomass of the TU after BC + N application. BC increased SOC stocks of both sites, depending on treatment. In TD BC increased K uptake by plants, but did not increase biomass. In summary, this study shows that the application of BC and WA had different effects on the soil -water-plant system in two different forest soils. This difference was attributed to (i) the soil characteristics, (ii) the application rates and (iii) whether or not nitrogen was applied. Long-term field experiments are required to test the performance and potential toxicity of these by-products as soil enhancers.

Funder

Agencia Estatal de Investigación

Publisher

Frontiers Media SA

Subject

Nature and Landscape Conservation,Environmental Science (miscellaneous),Ecology,Global and Planetary Change,Forestry

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3