What makes a good phorophyte? Predicting occupancy, species richness and abundance of vascular epiphytes in a lowland seasonal tropical forest

Author:

Shen Ting,Song Liang,Collart Flavien,Guisan Antoine,Su Yang,Hu Hai-Xia,Wu Yi,Dong Jin-Long,Vanderpoorten Alain

Abstract

Epiphytes typically exhibit clustered distribution patterns, but predicting the spatial variation of their distribution at fine scales has long been a challenge. Taking advantage of a canopy crane giving access to 1.1 ha of lowland seasonal rainforest in Yunnan (China), we assess here which factors promote the probability that a given tree hosts epiphytes, and the variation of species richness and abundance of epiphytic spermatophytes and ferns among trees. Variation in epiphyte species richness as a function of host tree size, characteristics of its surrounding environment, topography and microclimatic conditions, were analyzed by Random Forest. Epiphytic spermatophytes and ferns occupied 2.3 and 10.8% of the available host trees, respectively. Significant models predicting which trees are more likely to host epiphytes than others were obtained, indicating that host tree characteristics and their local environment play a significant role in determining which host tree is most likely to be colonized. These models, as well as models for species richness and abundance, however, exhibited a moderate to low accuracy (r2 0.28 and 0.24 and of 0.12 and 0.14 for spermatophyte and fern richness and abundance, respectively). The best predictor of the presence of epiphytes on a tree, of its epiphytic species richness and abundance, was its DBH. In ferns, however, two peaks of species richness were observed, representing shade-loving ferns on small trees and sun-loving ferns on large trees. Microclimatic conditions and light intensity were the second best factor accounting for variation in species richness and abundance among trees. The contribution of liana infestation, host tree identity, and characteristics of neighboring trees were marginal. Our inclusion of a large number of host-tree characteristics and their local environment did not allow for an apparent improvement of model accuracy over studies with a more limited number of predictors, pointing to the role of chance upon tree colonization. Our results confirm the utmost importance of large trees with emergent canopies for the conservation of the epiphytic flora, but also indicate that epiphytic diversity assessments in tropical forests must also include small understorey trees, which should be further considered for conservation. The importance of the micro-climatic conditions that prevail at the level of each individual host tree further points to the necessity of maintaining a buffer zone around large host trees targeted for conservation.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Yunnan Province

China Scholarship Council

Fédération Wallonie-Bruxelles

Fonds De La Recherche Scientifique - FNRS

Publisher

Frontiers Media SA

Subject

Nature and Landscape Conservation,Environmental Science (miscellaneous),Ecology,Global and Planetary Change,Forestry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3