Variability of leaf traits in natural populations of Picea omorika determines ignitability of fresh foliage

Author:

Popović Zorica,Vidaković Vera,Janković Jovana

Abstract

IntroductionA variety of plant traits, from architectural to the cellular level, have been connected to flammability, but intraspecific variability of plant traits (ITV) and components of flammability is poorly studied. The lack of knowledge about ITV of plant traits related to flammability appears to be a major shortcoming in further interpreting species flammability and fire behavior and incorporating the data into models.MethodsMorpho-ecophysiological traits (width, length, thickness, weight, area, volume, moisture content, flatness, specific leaf area, density of leaf tissue, ratio of area to volume) and time-to-ignition of fresh foliage were measured in seven populations of Picea omorika.ResultsAll leaf traits are presented along with their correlations to the flammability trait. The seven populations differed in terms of fresh leaves’ time-to-ignition. Differences among populations in morpho-ecophysiological traits were also significant but not consistent among populations. PCA classified 49 elements into three different groups, where three populations were clustered by higher leaf area-related traits, other three populations were clustered by higher leaf length, volume, thickness, time-to-ignition, density index, moisture content, width, weight, and one population was classified between the two main groups. The first two principal components accounted for 87% of the total variance: variability in leaf area- and leaf weight-derived parameters (specific leaf area and density index) and time-to-ignition primarily defined the formation of the first axis, while variability in leaf flatness (based on leaf weight and thickness) primarily contributed to the formation of the second axis.DiscussionResults suggest high ITV in natural populations of P. omorika regardless of site fire history.

Funder

Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja

Rufford Foundation

Publisher

Frontiers Media SA

Subject

Nature and Landscape Conservation,Environmental Science (miscellaneous),Ecology,Global and Planetary Change,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3