Community Managed Protected Areas Conserve Aboveground Carbon Stocks: Implications for REDD+

Author:

Alejo Camilo,Walker Wayne S.,Gorelik Seth R.,Potvin Catherine

Abstract

Protected Areas (PAs) represent a broad spectrum of outcomes and governance systems. Among PAs, Community Managed PAs have emerged from communities that are not exclusively indigenous and have developed social organizations to acquire land rights, participate in forest governance, and in some cases, engage in REDD+. However, regardless of the scale or counterfactual, there is no clear consensus about Community Managed PAs’ effectiveness in forest conservation and climate change mitigation. Furthermore, previous studies have been devoted to estimating PAs’ effects on deforestation before REDD+ projects began to operate. Based on Community Concessions in Petén (Guatemala) and Extractive Reserves in Acre (Brazil), we analyzed Community Managed PAs’ temporal and spatial effects on carbon stocks and avoided emissions relative to unprotected lands, other Sustainable Use PAs (IUCN V-VI), and Strict PAs (I-IV). We used carbon density maps, matching methods, geographic discontinuity designs, and sensitivity analysis between 2003 and 2015. After controlling for the influence of market access and agriculture suitability, our analysis shows that Community Managed PAs were more effective than Other Lands (i.e., unprotected) and Sustainable Use PAs, and at least as effective as Strict PAs, in preserving carbon stocks and avoiding emissions. For instance, relative to Other Lands between 2011 and 2015, Community Managed PAs resulted in net avoided emissions of 4.6 tCO2-eq/ha in Petén (Guatemala) and 2.15 tCO2-eq/ha in Acre (Brazil). While these net avoided emissions were lower than in previous years, they seem to be driven by a reduction in carbon emissions outside Community Managed PAs. Spatially, the boundaries of Community Managed PAs varied across jurisdictions. For example, the boundaries of Acre’s Community Managed PAs’ have become less effective in avoiding emissions, which translates into reduced effects on conserving carbon stocks. Our results highlight the need to assess temporal effects to exhibit jurisdiction-wide land-use dynamics and spatial effects to identify local land-use pressures emerging inside or around the boundaries of PAs. Our analysis also shows that decentralized governance in Community Managed PAs may contribute to climate change mitigation through REDD+ and forest conservation targets.

Publisher

Frontiers Media SA

Subject

Nature and Landscape Conservation,Environmental Science (miscellaneous),Ecology,Global and Planetary Change,Forestry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3