Phosphorus Leaching From Naturally Structured Forest Soils Is More Affected by Soil Properties Than by Drying and Rewetting

Author:

Gerhard Lukas,Puhlmann Heike,Vogt Margret,Luster Jörg

Abstract

Foliar phosphorus (P) concentrations in beech trees are decreasing in Europe, potentially leading to reductions in the trees’ growth and vitality. In the course of climate change, drying and rewetting (DRW) cycles in forest soils are expected to intensify. As a consequence, P leakage from the root zone may increase due to temporarily enhanced organic matter mineralization. We addressed the questions whether sites with different soil properties, including P pools, differ in their susceptibility to DRW-induced P leaching, and whether this is affected by the DRW intensity. A greenhouse experiment was conducted on naturally structured soil columns with beech saplings from three sites representing a gradient of soil P availability. Four DRW cycles were conducted by air-drying and irrigating the soils over 4 hours (fast rewetting) or 48 hours (slow rewetting). Leachates below the soil columns were analyzed for total P, and molybdate reactive P (considered as inorganic P). The difference was considered to represent organically bound P. Boosted regression trees were used to examine the effects of DRW and soil characteristics on P leaching. Contrary to a first hypothesis, that P leaching increases upon rewetting with the intensity of the preceding desiccation phase, intense soil drying (to pF 3.5 to 4.5) did not generally increase P leakage compared to moderate drying (to pF 2 to 3). However, we observed increased inorganic P concentrations and decreased organic P concentrations in leachates after drying to matric potentials above pF 4. Also against our expectations, fast rewetting did not lead to higher leakage of P than slow rewetting. However, the results confirmed our third hypothesis that the site poorest in P, where P recycling is mainly limited to the humus layer and the uppermost mineral soil, lost considerably more P during DRW than the other two sites. The results of our experiment with naturally structured soils imply that intensified drying and rewetting cycles, as predicted by climate-change scenarios, may not per se lead to increased P leaching from forest soils. Soil properties such as soil organic carbon content and texture appear to be more important predictors of P losses.

Publisher

Frontiers Media SA

Subject

Nature and Landscape Conservation,Environmental Science (miscellaneous),Ecology,Global and Planetary Change,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3