Quantitative methods for integrating climate adaptation strategies into spatial decision support models

Author:

Povak Nicholas A.,Manley Patricia N.,Wilson Kristen N.

Abstract

With the onset of rapid climate change and the legacy of past forest management and fire suppression policies, the capacity for forested landscapes to maintain core functionality and processes is being challenged. As such, managers are tasked with increasing the pace and scale of management to mitigate negative impacts of future large disturbances and improve resilience and climate adaptation of large landscapes. Such efforts require consensus building, with partners and stakeholders to determine where to allocate scarce resources. We present a methodology to identify strategic (where to go) and tactical (what to do) priorities across large landscapes to assist in project level planning. The model integrates a spatial assessment of current ecosystem resource conditions and spatial outputs from a landscape succession and disturbance simulation model (LANDIS-II) to assess the potential to achieve desired conditions under climate change with ongoing disturbances. Based on the expected trajectory of landscape conditions over time, the model applies fuzzy logic modeling to provide quantitative support for four management strategies (Monitor, Protect, Adapt, and Transform) across the landscape. We provide an example application of these methods targeting sustainable carbon loads across a 970,000 ha landscape in the central Sierras in California. By including future landscape conditions in the model, decisions made at the stand-level are inherently tied to and influenced by larger landscape-level processes that are likely to have the greatest impact on future landscape dynamics. The methods outlined here are able to incorporate multiple metrics to capture the many resources targeted by management. Model outputs could also be used as inputs into spatial optimization models to assess tradeoffs and synergies among treatment options and to aid in long-term planning.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3