Soil resources and functional trait trade-offs determine species biomass stocks and productivity in a tropical dry forest

Author:

Caleño-Ruiz Blanca Luz,Garzón Fabian,López-Camacho René,Pizano Camila,Salinas Viviana,González-M Roy

Abstract

Previous studies have shown that environmental conditions and plant attributes determine biomass stocks and productivity across multiple tropical forests. However, it is less clear how these factors act at local scales. We evaluated how the spatial variation of soil resource availability (soil nutrient and water content) and plant functional traits determine species biomass stocks and productivity in a Colombian tropical dry forest, based on spatially explicit soil sampling and an intensive plant trait characterization of 89 species in three 1-ha permanent plots with similar climate and floristic composition. Within each plot, we measured nine soil variables and ten functional traits and quantified forest biomass stocks and productivity for 10,161 individual trees in a period of 3 years. The soil resources where species were located and their functional traits had coordinated effects on the spatial distribution of forest biomass stocks across the plots. The highest biomass stocks were concentrated on nutrient-rich soils with low water availability and were dominated by conservative species with dense tissues and low hydraulic failure risk, probably because they are able to better cope with water limitation. Most of the remaining forest biomass stocks were found in nutrient-poor soils with high water availability and were dominated by acquisitive species. Sites with nutrient-rich soils and low water availability increased biomass survival but also mortality; however, the presence of conservative species in these sites also increased biomass survival, decreased mortality, and led to biomass accumulation, probably because their strong and hydraulically secure tissues are able to deal with water limitation for nutrient absorption during dry seasons. Interestingly, soil resources and functional traits had no effects on biomass recruitment. We conclude that strong coordinated effects of soil resources and functional traits determine local biomass processes of tropical dry forests with a central role of conservative trait species types, whereby these species promote community assembly and functioning but are also vulnerable to potential changes in water availability. Thus, conservation and restoration actions should pay special attention to soil and plant functional trait trade-offs to improve management practices in these threatened forests.

Publisher

Frontiers Media SA

Subject

Nature and Landscape Conservation,Environmental Science (miscellaneous),Ecology,Global and Planetary Change,Forestry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3