Carbon storage and carbon pool characteristics of Larix gmelinii forest in Daxing’anling, Inner Mongolia, China

Author:

Zhao Kai,Yue Yongjie,Qin Fucang,Hai Long,Yi Lixi,Zhao Pengwu,Hao Longfei,Shu Yang,Zheng Yaxiong,Li Long,He Rong,Xu Yajie

Abstract

Larix gmelinii is an important ecological construction tree species in northern China, and its carbon storage and distribution characteristics are of great significance for evaluating the carbon balance and climate effect of forest ecosystems. However, at present, there is a lack of systematic research on the carbon storage of L. gmelinii forests and its change with forest age. In this paper, the biomass and carbon density of L. gmelinii forests at different ages and the distribution of carbon storage in vegetation and soil were analyzed by means of sample plot investigation and model simulation in the northern forest area of Daxing’anling, Inner Mongolia. The influence of forest age on the carbon storage and carbon pool distribution characteristics of L. gmelinii forests and the mechanism of influencing factors were also discussed. Results show that: (1) As forest age increased, the total amount of carbon pools initially increased and then decreased, and the distribution structure of carbon pools showed a trend of transferring from soil to trees. The proportion of soil carbon pools gradually decreased (72.72–51.87%), while the proportion of tree carbon pools gradually increased (23.98–39.33%). The proportion of shrub and grass carbon pools was also relatively stable (0.51–0.53%). (2) Soil carbon pool was affected by the input and output of soil organic matter, soil depth, soil carbon content, and soil bulk density, shrub–grass carbon pool was affected by undergrowth light conditions and soil moisture, litter carbon pool was affected by litter input and output, and the carbon pool of trees was affected by the growth rate and carbon balance of trees. This study provides scientific basis and management suggestions for the carbon storage capacity of L. gmelinii forests and the mitigation of climate change.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3