California’s forest carbon offsets buffer pool is severely undercapitalized

Author:

Badgley Grayson,Chay Freya,Chegwidden Oriana S.,Hamman Joseph J.,Freeman Jeremy,Cullenward Danny

Abstract

California operates a large forest carbon offsets program that credits carbon stored in forests across the continental United States and parts of coastal Alaska. These credits can be sold to buyers who wish to justify ongoing emissions, including in California’s cap-and-trade program. Although fossil CO2 emissions have effectively permanent atmospheric consequences, carbon stored in forests is inherently less durable because forests are subject to significant socioeconomic and physical risks that can cause temporarily stored carbon to be re-released into the atmosphere. To address these risks, California’s program is nominally designed to provide a 100-year guarantee on forest carbon claims based on a self-insurance program known as a buffer pool. Projects contribute credits to the buffer pool based on a suite of project-specific risk factors, with buffer pool credits retired as needed to cover carbon losses from events such as wildfire or drought. So long as the buffer pool remains solvent, the program’s permanence claim remains intact. Here, we perform an actuarial analysis of the performance of California’s buffer pool. We document how wildfires have depleted nearly one-fifth of the total buffer pool in less than a decade, equivalent to at least 95 percent of the program-wide contribution intended to manage all fire risks for 100 years. We also show that potential carbon losses from a single forest disease, sudden oak death, could fully encumber all credits set aside for disease and insect risks. These findings indicate that California’s buffer pool is severely undercapitalized and therefore unlikely to be able to guarantee the environmental integrity of California’s forest offsets program for 100 years.

Publisher

Frontiers Media SA

Subject

Nature and Landscape Conservation,Environmental Science (miscellaneous),Ecology,Global and Planetary Change,Forestry

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3