Secondary shrubs promoted the priming effect by increasing soil particle organic carbon mineralization

Author:

Yu Qinghui,Zhang Zixu,He Yuan,Hao Ming,Wang Guifang,Dun Xingjian,Wu Qicong,Gao Peng

Abstract

IntroductionInputs of additional organic matter to the soil will accelerate or inhibit the decomposition of soil organic carbon (SOC), resulting in a priming effect (PE), which is a key mechanism affecting soil carbon (C) cycling. The impact mechanism of changes in soil properties on the PE is still unclear after vegetation restoration; in particular, the contribution of C pools with different turnover rates to the PE has not been distinguished and quantified.MethodsIn this study, the secondary shrub (SB) (Vitex negundo var. heterophylla) formed by the enclosure of barren grassland was selected as the research object, and the barren grassland (GL) was taken as the control. Equal amounts of 13C-labeled glucose were added to the topsoil for a 45-day incubation experiment to measure the PE. Moreover, soil samples were destructively sampled to explore the fate of new C and changes in POC and MAOC fractions during incubation.ResultsAfter 45 days of incubation, most of the new C formed by glucose flowed to MAOC, with 95.45% in SB soil and 92.29% in GL soil. In the experiment, all soils showed a positive PE. The PE, POC mineralization and MAOC accumulation were higher in SB soil than in GL soil. During incubation, the mineralization of POC was positively correlated with the PE and made a major contribution to the PE. Partial correlation analysis showed that after vegetation restoration, SB further promoted the mineralization of POC by increasing the soil moisture, fungal diversity and necromass C of bacteria, which led to an increase in PE.ConclusionThe SB mainly enhanced PE by increasing soil fungal diversity and mineralization of POC. And increasing PE due to the SB may lead to an increase in soil C emissions. Therefore, we need to adopt forest management and other measures to address the potential risks of increased soil C emissions in the vegetation restoration process.

Publisher

Frontiers Media SA

Subject

Nature and Landscape Conservation,Environmental Science (miscellaneous),Ecology,Global and Planetary Change,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3