Compensatory responses of leaf physiology reduce effects of spring frost defoliation on temperate forest tree carbon uptake

Author:

Reinmann Andrew B.,Bowers Justin T.,Kaur Prableen,Kohler Clare

Abstract

Spring frosts can defoliate trees, reduce canopy carbon assimilation, and alter interspecific competition dynamics. These events may become more common with climate change, but our understanding of the associated ecological impacts is limited by the stochastic nature of their occurrences. In 2020, a late spring frost defoliated oak (Quercus spp.), but not co-occurring maples (Acer spp.) across temperate broadleaf forests of the Hudson Highlands in southern New York State, U.S.A. Defoliation impacted 60% of this region’s forests and delayed full leaf expansion of oaks by ∼17 days. We used this event as an opportunity to advance understanding of how leaf-level physiology, radial growth, and interspecific competition dynamics of mature trees respond to frost-induced defoliation. We quantified leaf-level photosynthetic capacity, stomatal conductance, and water-use efficiency (WUE), as well as basal area increment of defoliated red oak (Q. rubra) trees and non-defoliated red maple (A. rubrum) trees in 2020 (“defoliation year”) and 2021 (“reference year”). Oak defoliation provided red maple trees with a competitive edge in terms of photosynthetic capacity early in the growing season. However, the second cohort of red oak leaves that developed following defoliation had photosynthetic capacities that were 3–4 times higher than red maple trees by the second half of the growing season, likely facilitated by higher rates of stomatal conductance. The growing season mean photosynthetic capacities for the defoliation year were significantly higher for red oaks than red maples. Red oak basal area increment tended to be higher than red maple during both the defoliation and reference years. For both species basal area increment was significantly higher during the reference year than defoliation year, but the reasons remain unclear. Taken together, these findings demonstrate that temporal patterns of photosynthesis in temperate broadleaf forests are altered by defoliation events, but enhanced photosynthetic capacities of second cohort leaves can reduce the negative effects of delayed leaf expansion and mitigate competitive advantages conferred to undefoliated co-occurring tree species. We suggest that understanding a tree species’ ability to compensate for frost-induced defoliation is essential to accurately predict effects of extreme climate events on tree competition dynamics and ecosystem processes.

Publisher

Frontiers Media SA

Subject

Nature and Landscape Conservation,Environmental Science (miscellaneous),Ecology,Global and Planetary Change,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3