Mycorrhizal Fungi Associated With Juniper and Oak Seedlings Along a Disturbance Gradient in Central Mexico

Author:

Bermúdez-Contreras Ana I.,Monroy-Guzmán Camila,Pérez-Lucas Lizbeth,Escutia-Sánchez Jorge Alberto,Del Olmo-Ruiz Mariana,Truong Camille

Abstract

Competition for resources between arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) plants can alter belowground mycorrhizal communities, but few studies have investigated host effects on both AM and ECM communities. In Central Mexico, the AM plant Juniperus deppeana is frequently used for reforesting areas affected by soil erosion, while the surrounding native forests are dominated by ECM oak trees. Oaks are capable of associating with both AM and ECM fungi during part of their life cycle (a feature known as dual mycorrhization) but it is unclear whether junipers possess such ability. To assess how juniper planting may affect belowground fungal interactions with oaks, we investigated mycorrhizal associations in J. deppeana and Quercus rugosa seedlings along a disturbance gradient: a native oak forest, a mixed Juniperus-Quercus population in secondary vegetation and a juniper site severely degraded by mining extraction. We measured root colonization and identified fungal communities using soil and root meta-barcoding of the ITS2 rDNA region. ECM fungal community composition was strongly affected by disturbance (regardless of host), while the community composition of AM fungi was mostly host-dependent, with a higher AM fungal richness in J. deppeana. Importantly, the fungal communities associated with Q. rugosa seedlings significantly changed in the vicinity of juniper trees, while those of J. deppeana seedlings were not affected by the presence of oak trees. Even though ECM fungal richness was higher in Q. rugosa and in the native forest, we detected a variety of ECM fungi associated exclusively with J. deppeana seedlings, suggesting that this plant species may be colonized by ECM fungi. Our results indicate that J. deppeana can alter ECM native fungal communities, with implications for its use in reforestation of mixed oak forests.

Funder

Consejo Nacional de Ciencia y Tecnología

Publisher

Frontiers Media SA

Subject

Nature and Landscape Conservation,Environmental Science (miscellaneous),Ecology,Global and Planetary Change,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3