Climate Change Increases the Severity and Duration of Soil Water Stress in the Temperate Forest of Eastern North America

Author:

Cholet Cybèle,Houle Daniel,Sylvain Jean-Daniel,Doyon Frédérik,Maheu Audrey

Abstract

Under climate change, drought conditions are projected to intensify and soil water stress is identified as one of the primary drivers of the decline of forests. While there is strong evidence of such megadisturbance in semi-arid regions, large uncertainties remain in North American temperate forests and fine-scale assessments of future soil water stress are needed to guide adaptation decisions. The objectives of this study were to (i) assess the impact of climate change on the severity and duration of soil water stress in a temperate forest of eastern North America and (ii) identify environmental factors driving the spatial variability of soil water stress levels. We modeled current and future soil moisture at a 1 km resolution with the Canadian Land Surface Scheme (CLASS). Despite a slight increase in precipitation during the growing season, the severity (95th percentile of absolute soil water potential) and duration (number of days where absolute soil water potential is greater than or equal to 9,000 hPa) of soil water stress were projected to increase on average by 1,680 hPa and 6.7 days in 80 years under RCP8.5, which correspond to a 33 and 158% increase compared to current levels. The largest increase in severity was projected to occur in areas currently experiencing short periods of soil water stress, while the largest increase in duration is rather likely to occur in areas already experiencing prolonged periods of soil water stress. Soil depth and, to a lesser extent, soil texture, were identified as the main controls of the spatial variability of projected changes in the severity and duration of soil water stress. Overall, these results highlight the need to disentangle impacts associated with an increase in the severity vs. in the duration of soil water stress to guide the management of temperate forests under climate change.

Publisher

Frontiers Media SA

Subject

Nature and Landscape Conservation,Environmental Science (miscellaneous),Ecology,Global and Planetary Change,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3