Response of wood decomposition to different forms of N deposition in subtropical forests

Author:

Wu Chunsheng,Shu Chunjie,Yuan Xi,Deng Bangliang,Shen Fangfang,Zhang Yi,Liu Yuanqiu

Abstract

AimsWood decomposition plays an important role in ecosystem soil fertility and nutrient cycling, but how different forms of nitrogen (N) affect these biogeochemical processes is still unclear. The effects of N deposition on wood decomposition have been widely studied, but the decomposition process and biotic driver response to different forms of N have rarely been studied.MethodsIn this study, we conducted a two-year field factorial fertilization experiment with different N forms in a subtropical Chinese forest. Glycine and urea were selected as organic N (ON), and ammonium nitrate was selected as inorganic N (IN). Six different ratios (control, 0:10, 3:7, 5:5, 7:3, 10:0) of IN:ON with equal N amounts were uniformly added to the studied wood.ResultsWe found that both forms of N deposition, i.e., ON and IN, accelerated the wood decomposition rates across the four studied species, and the magnitude of the increase was species specific. Mixed fertilizer with ON and IN resulted in the highest responses in the wood decomposition rate, which was 1.73- and 1.48-fold higher than that in the control and in response to IN addition alone across species. The ON + IN treatment resulted in the highest faunal and microbial community abundance of the decomposing wood.ConclusionIn summary, our results indicate that different forms of anthropogenic N enrichment can promote wood decomposition through the modification of microbial and faunal communities in the wood decomposition process. Our results show that future studies need to consider N forms and components when estimating exogenous N deposition effects on the woody material nutrient cycle and terrestrial ecosystem carbon cycles.

Publisher

Frontiers Media SA

Subject

Nature and Landscape Conservation,Environmental Science (miscellaneous),Ecology,Global and Planetary Change,Forestry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3