Successional trajectories of seed dispersal mode and seed size of canopy tree species in wet tropical forests

Author:

Wendt Amanda L.,Chazdon Robin L.,Vargas Ramirez Orlando

Abstract

Despite the critical role of seed dispersal for tree colonization during forest succession in wet tropical forests, successional trajectories of seed dispersal modes are poorly documented at the community level. Overall successional trends in wet tropical forests indicate that, over time, animal-dispersed and large-seeded species increase in relative abundance in woody vegetation, whereas wind-dispersed and small-seeded species decline. Increased abundance of animal-dispersed trees during succession may be attributed to higher rates of seed deposition by animals and higher survival rates of animal-dispersed species with larger seeds (diaspores) compared to wind-dispersed species. We compiled categorical information on seed size (maximum seed length) and dispersal mode (anemochory, autochory, or zoochory) for 240 canopy tree species in six naturally regenerating forests (11–45 years since the abandonment of pasture) and two old-growth forests in lowland wet forests in northeastern Costa Rica. We evaluated dispersal mode and seed size among tree species classified as second growth and old growth specialists, and generalists based on relative abundance data in these plots. Further, we compared long-term trajectories in the dispersal and seed-size profile for 240 species of canopy tree species for seedlings, saplings, and trees ≥5 cm dbh using annual vegetation survey data from 1997 to 2013. Seed size was significantly associated with dispersal mode, which was driven by anemochorous species with intermediate seeds 6 mm to 15 mm and autochorous seeds with large seeds >15 mm. Dispersal modes of canopy tree species exhibited clear directional trajectories, with decreasing relative abundance of anemochory and increasing relative abundance of zoochory. Zoochorous seedlings showed higher survival rates than anemochorous seedlings. Species with seeds ≤ 6 mm decreased in relative abundance through succession, while species with seeds >15 mm increased within seedling and sapling communities. Seedlings with seeds >15 mm showed higher survival rates than smaller seeds in second-growth forests. The study further demonstrates the importance of seed traits, such as dispersal mode and seed size, for community assembly during forest regrowth, and the importance of frugivorous animals in this process. The abundance of animal-dispersed tree species in different size classes can be a useful indicator of the recovery of biodiversity and species interactions during forest succession in wet tropical regions.

Publisher

Frontiers Media SA

Subject

Nature and Landscape Conservation,Environmental Science (miscellaneous),Ecology,Global and Planetary Change,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3