Intra-annual dynamic of opposite and compression wood formation of Pinus massoniana Lamb. in humid subtropical China

Author:

Wang Chunsong,Zheng Zhuangpeng,Zhou Feifei,Liu Xinsheng,Fonti Patrick,Gao Jiani,Fang Keyan

Abstract

Radial growth of trees can result in opposite wood (OW) and compression wood (CW) due to the varying impact of stem mechanical stress, such as that caused by gravity or wind. Previous research has identified higher xylem production in CW compared to OW. Yet, it remains unclear whether the difference in the number of xylem cells between OW and CW results from differences in growth rate or the duration of xylem cells. In this study, we collected wood microcores on a weekly basis from March 2019 to January 2020 in Pinus massoniana Lamb. located on a steep slope. Our objective was to compare the dynamic of cambial activity and resulting cellular anatomical parameters between OW and CW in a humid subtropical environment. Our results showed that the xylem phenology of OW and CW was generally consistent with the xylem cell division process beginning in early March and ceasing in November. The last latewood cell completed its differentiation at the end of December. The response of wood formation dynamics to climate was consistent in both OW and CW. Moreover, both wood types exhibited a limited development of the enlargement phase due to the heat and drought during the summer. The rate of cell division was responsible for 90.7% of the variability in the number of xylem cells. The CW xylem obtained a larger number of cells by increasing the rate of cell division and displayed thinner earlywood cells with larger lumens than OW cells. Our findings showed that the xylem of conifer species responds to mechanical stress by accelerating the cell division rate. As a result, we suggest calculating the ratio between OW and CW widths to reconstruct wind stress changes rather than calculating the residuals used in the current study.

Publisher

Frontiers Media SA

Subject

Nature and Landscape Conservation,Environmental Science (miscellaneous),Ecology,Global and Planetary Change,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3