Author:
Tunlid Anders,Floudas Dimitrios,Op De Beeck Michiel,Wang Tao,Persson Per
Abstract
A major fraction of nitrogen (N) in boreal forest soils is found in organic forms associated with soil organic matter (SOM) and mineral particles. The capacity of ectomycorrhizal (ECM) fungal symbionts to access this N is debated, considering that these fungi have lost many of the genes for decomposing organic matter that were present in their saprotrophic ancestors. To gain a molecular-level understanding of the N-mining processes in ECM fungi, we developed an experimental approach where the processes of decomposition were studied in parallel with the changes in the structure and properties of the organic matter. We showed that ECM fungi have significant capacities to assimilate organic N associated with SOM and mineral surfaces. The decomposition mechanisms differ between species, reflecting the lignocellulose decomposition mechanisms found in their saprotrophic ancestors. During N-mining, the ECM fungi processed the SOM to a material with increased adsorptive properties to iron oxide mineral particles. Two pathways contributed to these changes: Extracellular modifications of the SOM and secretion of mineral surface reactive metabolites. Some of these metabolites have iron(III)-reducing activities and can participate in extracellular Fenton reactions and redox reactions at iron oxide mineral surfaces. We conclude that the traditional framework for understanding organic N acquisition by ECM fungi from recalcitrant SOM must be extended to a framework that includes how those decomposition activities affect the stabilization and reactivity of mineral-associated SOM. The activity through these complex networks of reactions is decisive for the overall effect of ECM fungal decomposition on nutrients and C-cycling in forest ecosystems.
Funder
Knut och Alice Wallenbergs Stiftelse
Vetenskapsrådet
Subject
Nature and Landscape Conservation,Environmental Science (miscellaneous),Ecology,Global and Planetary Change,Forestry
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献