Decomposition of soil organic matter by ectomycorrhizal fungi: Mechanisms and consequences for organic nitrogen uptake and soil carbon stabilization

Author:

Tunlid Anders,Floudas Dimitrios,Op De Beeck Michiel,Wang Tao,Persson Per

Abstract

A major fraction of nitrogen (N) in boreal forest soils is found in organic forms associated with soil organic matter (SOM) and mineral particles. The capacity of ectomycorrhizal (ECM) fungal symbionts to access this N is debated, considering that these fungi have lost many of the genes for decomposing organic matter that were present in their saprotrophic ancestors. To gain a molecular-level understanding of the N-mining processes in ECM fungi, we developed an experimental approach where the processes of decomposition were studied in parallel with the changes in the structure and properties of the organic matter. We showed that ECM fungi have significant capacities to assimilate organic N associated with SOM and mineral surfaces. The decomposition mechanisms differ between species, reflecting the lignocellulose decomposition mechanisms found in their saprotrophic ancestors. During N-mining, the ECM fungi processed the SOM to a material with increased adsorptive properties to iron oxide mineral particles. Two pathways contributed to these changes: Extracellular modifications of the SOM and secretion of mineral surface reactive metabolites. Some of these metabolites have iron(III)-reducing activities and can participate in extracellular Fenton reactions and redox reactions at iron oxide mineral surfaces. We conclude that the traditional framework for understanding organic N acquisition by ECM fungi from recalcitrant SOM must be extended to a framework that includes how those decomposition activities affect the stabilization and reactivity of mineral-associated SOM. The activity through these complex networks of reactions is decisive for the overall effect of ECM fungal decomposition on nutrients and C-cycling in forest ecosystems.

Funder

Knut och Alice Wallenbergs Stiftelse

Vetenskapsrådet

Publisher

Frontiers Media SA

Subject

Nature and Landscape Conservation,Environmental Science (miscellaneous),Ecology,Global and Planetary Change,Forestry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3