Could climate change and urban growth make Europeans regard urban trees as an additional source of danger?

Author:

Portoghesi Luigi,Masini Emanuela,Tomao Antonio,Agrimi Mariagrazia

Abstract

In some geographical areas of North America and Southeast Asia cities are frequently hit by heavy windstorms capable of knocking down hundreds of urban trees and large branches in a few minutes. Falling trees generate a broad array of disservices that vary over time and space. In Europe and worldwide the frequency of these extreme weather events has increased in recent decades and climate change could intensify these windstorms while the effects of urban land expansion could increase the extent of damage. However, Europe’s urban populations are unprepared for extreme weather events and are unable to limit the effects that the widespread loss of trees over limited space and time can have on people, buildings and city road networks. Preparing for rare, extreme future events that could strongly affect urban green infrastructures is a demanding challenge for city dwellers and for those who should ensure the continuity of the ecosystem services provided by urban trees. In fact, the damage caused by fallen trees is combined with the loss of the benefits provided by the trees themselves. Therefore the aim of this paper is to: (a) investigate the disruptions that a windstorm can cause in an urban area full of trees using a conceptual model; (b) conduct a literature review to determine how high the risk of these disservices occurring in Europe really is, which is definitely more likely than commonly perceived and could increase as a result of climate change and; (c) indicate what kind of measures can be taken in European cities to prevent or at least reduce the risks from falling urban trees during a strong windstorm, starting from the experience gained in the geographical areas most frequently and intensely affected by this type of weather event.

Publisher

Frontiers Media SA

Subject

Nature and Landscape Conservation,Environmental Science (miscellaneous),Ecology,Global and Planetary Change,Forestry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3