Dynamics of Soil CO2 Efflux and Vertical CO2 Production in a European Beech and a Scots Pine Forest

Author:

Jochheim Hubert,Wirth Stephan,Gartiser Valentin,Paulus Sinikka,Haas Christoph,Gerke Horst H.,Maier Martin

Abstract

The conversion of coniferous forest to deciduous forest is accompanied by changes in the vertical distribution of fine roots and soil organic carbon (SOC) content. It is unclear how these changes affect soil CO2 efflux and vertical soil CO2 production, considering changing climate. Here, we present the results of a 6-year study on CO2 efflux, covering relatively warm-dry and cool-wet years. A combination of the flux-gradient method and closed chamber measurements was used to study the CO2 efflux and the vertical distribution of soil CO2 production in a beech (Fagus sylvatica L.) and a pine (Pinus sylvestris L.) forest in northeast Germany. We observed, on average, similar CO2 efflux with 517 (±126) and 559 (±78) g C m–2 a–1 for the beech site and the pine site, respectively. CO2 efflux at the beech site exceeded that at the pine site during the wet year 2017, whereas in dry years, the opposite was the case. Water availability as indicated by precipitation was the primary determining long-term factor of CO2 efflux, whereas seasonal variation was mainly affected by soil temperature, and—in the case of beech—additionally by soil water content. CO2 efflux decreased more dramatically (-43%) at the beech site than at the pine site (-22%) during the warm-dry year 2018 compared to the cool-wet year 2017. We assumed that drought reduces heterotrophic respiration (Rh) at both sites, but additionally decreases autotrophic respiration (Ra) at the beech stand. Soil CO2 production at the beech site ranged over a greater soil depth than at the pine site, attributed to different fine root distribution. The organic layer and the A horizon contributed 47 and 68% of total CO2 efflux at the beech site and the pine site, respectively. The seasonal patterns of different CO2 efflux between both sites were assumed to relate to different phases of tree physiological activity of deciduous compared to evergreen tree species.

Publisher

Frontiers Media SA

Subject

Nature and Landscape Conservation,Environmental Science (miscellaneous),Ecology,Global and Planetary Change,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3